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A simple noninterferometric approach for probing the geometric phase of a structured Gaussian beam is
proposed. Both the Gouy and Pancharatnam-Berry phases can be determined from the intensity distribution
following a mode transformation if a part of the beam is covered at the initial plane. Moreover, the
trajectories described by the centroid of the resulting intensity distributions following these transformations
resemble those of ray optics, revealing an optical analogue of Ehrenfest’s theorem associated with changes
in the geometric phase.
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In 1984, almost 30 years after Pancharatnam [1] first
noticed a geometric phase in light polarization, Berry [2,3]
discovered that quantum systems acquire not only a
dynamic phase due to time evolution but also a geometric
phase dependent on the path taken in their parameter space.
This geometric phase, known also as the Pancharatnam-
Berry (PB) phase, depends only on the parameter space’s
geometry. Geometric phases have undergone extensive
generalizations, led to many applications [4–11], and
become a unifying concept in physics. Geometric phases
of light appear in many scenarios, such as polarization [1]
and changes in the propagation direction [12]. Changes in
the transverse modal structure of an optical beam can also
lead to a geometric phase [13–18] understood in the context
of a spatial mode Poincaré sphere. It is this last type of
geometric phase that is the main focus of this work.
The modal Poincaré sphere (MPS) was proposed for

first-order structured Gaussian beams [14], where the two
poles correspond to Laguerre-Gauss (LG) modes with
equal circular shape but opposite vorticity. All other points
over the sphere correspond to complex linear combinations
of these two modes. In particular, points along the equator
correspond to rotated Hermite-Gauss (HG) modes with
Cartesian ordersm ¼ 1, n ¼ 0. This MPS construction was
later extended [15] to characterize higher-order modes. The
two poles are again assigned to LG modes with equal radial
order p and azimuthal orders �l (l ≥ 0). The rest of the
sphere corresponds not to linear combinations of these two
modes but to the generalized Hermite-Laguerre-Gauss
(HLG) modes [19], with points over the equator corre-
sponding again to rotated HG modes with Cartesian orders
m ¼ pþ l, n ¼ p. Figure 1 shows an example of this MPS

corresponding to p ¼ 5, l ¼ 3, with experimentally mea-
sured modes decorating the sphere’s surface. Given this
construction, it is natural that a PB phase arises from a
series of optical transformations that traces a closed path
over the MPS.
Herewe present a simple noninterferometric approach for

measuring the PB phase. This approach emerges from a
deeper understanding of structured Gaussian beams, based
on an intuitive ray model [20,21] that explains both the PB
and Gouy phases. Structured Gaussian beams can be
described in terms of a ray family in which each ray is
specified by thevalues of two periodic parameters τ and η. At
any transverse plane, the rays corresponding to all values of
τ, for fixed η, trace an ellipse with a given orientation,
handedness, and eccentricity (see Supplemental Material
[22] for details). In analogy with polarization, this ellipse of
rays corresponds to a point on the Poincaré sphere. The
second variable, η, parametrizes a closed loop over the
sphere, referred to here as the Poincaré path (PP), shown as a
colored circle in Fig. 1, for a HG mode. Each beam
corresponds not to a point but to an extended path over
the sphere. The transverse ray structure is then a continuous
superposition of ellipses, where each point of each ellipse is
a ray. For HG, LG, and more general HLG modes, the PP is
simply a circle, whose center (also shown in Fig. 1)
corresponds to the spot used in the standard MPS repre-
sentations [7,14,15,23], so we call it the modal spot. Note
that the ray ellipses form envelopes, i.e., caustics, in the
vicinity of which the main intensity features are localized.
For HG modes, these caustics have a rectangular shape (see
Fig. 1), consistent with the fact that the wave solution is
separable in Cartesian coordinates. Similarly, for a LG
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mode, separable in polar coordinates, the caustics are two
concentric circles. Note also that modes with equal total
mode order N belong in the same sphere but correspond to
different PPs. For example, the PPs forHGmodeswith equal
N ¼ mþ n are circles centered at the same modal spot but
with different sizes, enclosing a solid angle quantized as
2πð2nþ 1Þ=ðN þ 1Þ [21].
Conversion between modes is possible using a series of

anisotropic quadratic phase masks implemented with spa-
tial light modulators (SLMs) [24,25]. These transforma-
tions have the effect of rotating the MPS around an axis
within the equatorial plane. The orientation of this axis
depends on the orientation of the quadratic phases, and the
angle of rotation depends on their strength. A sequence of
transformations can be considered that brings the modal
spot of the circular PP back to its initial position. One such
example is presented in Fig. 2, where the modal spot starts
and ends at an equatorial point that corresponds to a HG
mode. Even though the final and initial modal spots
coincide, each point of the PP is shifted according to
η → η −Ω, where Ω ¼ 2γ is the solid angle traced by the
modal spot and γ is the angle between the segments of the
trajectory. This transformation sequence is equivalent to a
single rotation by Ω of the sphere around the direction of
the initial or final modal spot. Wave-optically, this rotation
corresponds to an anamorphic fractional Fourier transform
(see Supplemental Material [22]) acting on the mode,
which can be written in operator form as

wave

rays

FIG. 1. Modal Poincaré sphere for p ¼ 5, l ¼ 3. The red
frame identifies the input horizontal HG8;5 mode used in the
experiments. The colored circle over the sphere corresponds to
the Poincaré path (PP) of this mode, where each point
corresponds to a family of rays whose cross section is an
ellipse. Some of these ellipses of rays are shown in the bottom-
left picture labeled “rays,” where color is used to identify
these ellipses with points along the PP. These colors represent
different values of η, while different rays within each ellipse
correspond to different values of τ. The 3D picture of
the beam’s wave intensity is shown above that for the rays.
The center of the PP is the modal spot, shown as a red dot.
Also shown are the experimental intensity distributions of
other modes, corresponding to the modal spots shown as
orange dots. (The corresponding PPs and ray distributions are
not shown).

wave (simulated)

final

initial

rayswave (measured)

FIG. 2. Mode transformation corresponding to the closed (red) path traced by the modal spot over the MPS. The ray distributions at
different stages along the path are shown inside the circles around the MPS, where points of equal color correspond to equal values of η.
The initial and final ray distributions (directly to the left of the MPS) have the same rectangular shape and correspond to the same HG
mode, but the different color distribution reveals the cycling of the rays that gives rise to the PB phase. For the initial ray distribution, the
colors of the ellipses identify points of the PP in Fig. 1. The figures on the left (gray background) show the effect of blocking all but
the lower-right corner of the initial HG beam, before (bottom row) and after (top row) the mode transformation, and the resulting drift in
the intensity centroid (red crosses) for the measured and simulated intensities, and the transmitted rays.
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exp ½iγðĤx − ĤyÞ�; ð1Þ

where Ĥq for q ¼ x, y has the form of a 1D harmonic
oscillator Hamiltonian given by

Ĥq ¼
q2

w2
0

−
w2
0

4

∂2

∂q2 ; ð2Þ

with w0 being the waist width [26]. The modal PB phase is
then derived using an operator formalism analogous to
that used in quantum mechanics [20,27]. Since HG modes
are eigenstates of the operator Ĥx − Ĥy with eigenvalue
N − 2n, the effect of the operator in Eq. (1) is then to
produce the PB phase Φ ¼ ðN − 2nÞγ. Within the ray
picture, this transformation has an intuitive geometric
interpretation: It simply corresponds to a cycling of the
roles played by the different ellipses of rays (compare the
initial and final ray configurations in Fig. 2). The PB phase
is then caused by a change in the role that each ray plays in
the beam profile.
The proposed method for probing the geometric phase

exploits this cycling. If part of the initial beam is occluded,
the shadow in the final beam is at a different part of its
transverse profile, its location linked to the acquired PB
phase. Figure 2 shows the effects of this occlusion for both
rays and waves, where only the lower-right corner of the
initial HG beam is unblocked. Following the modal trans-
formation, the unblocked rays spread out and drift towards
the upper-left corner due to the ray cycling caused by the
transformation. The simulated and experimentally mea-
sured wave intensities exhibit the behavior anticipated by
analyzing the rays. The position of the intensity distribution
centroid is sufficient for determining the PB phase. The
intensity centroid ðxc; ycÞ after the transformation is just a
linear combination of the intensity centroid ðx0; y0Þ of the
initial beam and that of its Fourier transform [28,29].
Furthermore, because the Fourier-space centroid vanishes
when the initial beam is a blocked HG mode, the centroid
for the transformation considered here is simply

ðxc; ycÞ ¼ ðx0; y0Þ cos γ: ð3Þ

This centroid gives access to γ within the range ½0; πÞ, from
which the PB phase can be deduced. For N − 2n ¼ l > 2,
this allows discriminating between different multiples of
2π, in contrast with interferometric approaches [17].
In our experiments, the mode transformation is based on

a setup [24,30] that uses three anisotropic lenses equally
separated by a distance z, as shown in Fig. 3. The powers of
these lenses are parametrized by the angles αx, αy as

pðL1;L3Þ
q ¼ ½1 − cotðαq=2Þ=2�=z; ð4aÞ

pðL2Þ
q ¼ 2ð1 − sin αqÞ=z; ð4bÞ

where L1, L2, and L3 denote the three lenses and pðLjÞ
q is

the power of Lj along the q direction, with q ¼ x, y. (The
relation between the angles αx, αy and the system’s geo-
metric phase is discussed in Supplemental Material [22].)
The lenses are implemented electronically by displaying
their phase transmittances on two SLMs controlled using
LabView. Note that L2 is implemented in reflection mode, so
L1 and L3 correspond to the same SLM. The desired input
beam (a HG8;5 mode, shown in Fig. 1) is prepared by
illuminating a third SLM in a different setup (not shown in
Fig. 3) with a collimated laser beam (λ ¼ 795 nm) polar-
ized along the SLM’s preferred axis. A metallic mask
occludes part of the input beam, and the intensity is
recorded by a CCD. The intensity of the obscured input
beam is shown in the lower-left corner in both Figs. 2 and 3.
The centroid coordinates (xc, yc) are computed from the
recorded intensity, and Eq. (3) is used to extract two values
for γ, which are averaged to obtain the final estimate.
Notice from Fig. 3 that the setup also includes a reference
arm, not used for the centroid measurements.
For validation, interferometric measurements are also

performed by sending the complete HG mode through both
the test and reference arms (see Supplemental Material [22]
for details). Figure 4 shows the agreement between the PB
phases obtained via interferometry and the centroid mea-
surements, for multiple values of γ corresponding to many
paths over the MPS.
An important feature of the intensity centroid measure-

ment is its insensitivity to the dynamic phase and its ability
to determine also the Gouy phase. This phase is a result of
the increase in spacing between wave fronts near the focal
regions of any beam, and, for the beams considered here, it

FIG. 3. Schematic of the optical setup. For the noninterfero-
metric measurement, only the arm of the Michelson interferom-
eter that contains the SLMs is used. The anisotropic lenses L1 and
L3 are implemented on SLM1, while L2 is implemented on
SLM2. The input field is imaged onto SLM1 using a 4f system
(unit magnification) formed by lenses Li1 and Li2. In the
reference arm (used for the interferometric measurements), the
field is relayed onto mirror M using another telescope formed by
lenses Li5 and Li6 (magnification ¼ 0.5). The interference signal
is relayed to the CCD detector using the 4f system formed by
lenses Li3 and Li4 (magnification ¼ 0.5). Distances are not
drawn to scale.
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constitutes an extra phase of ðN þ 1Þπ=2 between the waist
plane and the far zone [21,31]. Different interpretations
have been given to this phase [32–34], but here we focus on
its connection with ray optics. Within the ray picture of
structured Gaussian beams used here, the Gouy phase
corresponds to a shift in the other ray parameter, τ → τ þ ζ,
where ζ ¼ arctanðz=zRÞwith zR being the beam’s Rayleigh
range [21,31]. That is, while the PB phase corresponds to a
cycling of the ellipses of rays (a shift in η), the Gouy phase
corresponds to a cycling of rays within each ellipse. This
cycling also has the effect of moving the obstruction’s
shadow, and the resulting intensity centroid (see Fig. 5) is
now given by

ðxc; ycÞ ¼ ½x0 cosðξþ γÞ; y0 cosðξ − γÞ�; ð5Þ

where ξ ¼ ðN þ 1Þζ=N. Therefore, both the Gouy and PB
phases can be inferred from the centroid position, without
the need for diffraction calculations [35].
An interesting manifestation of Ehrenfest’s theorem

emerges in this context: The centroid coordinates in
Eq. (5) mimic the ray positions for the HG modes [compare
with Eq. (S3) in Supplemental Material [22]], with γ
playing the role of η and ξ that of τ. Like the rays, the
centroids are constrained to a rectangle centered at the
origin with upper-right corner coordinates (jx0j, jy0j). This
is shown in Fig. 6 for both the theory and experimental
measurements. This rectangular envelope is a scaled

version of the caustics for the beam [21]. For a fixed PB
phase (γ) and varying Gouy phase (ξ), the centroid traces an
ellipse that is inscribed in this rectangle, similar to the ray
ellipses.
In summary, a noninterferometric method for measuring

geometric phases in structured Gaussian beams is pre-
sented. The approach is motivated by the toroidal structure
(involving two periodic parameters) of the ray family
associated with these beams, and it relies on the fact that
the PB and Gouy phases correspond to shifts on each of the
two ray parameters (two different rotations of this torus).
These shifts have no effect on the intensity of the
unperturbed beam, but they become appreciable when part
of the beam is blocked. Note that, when the blocked part is
not too large, we can view this phenomenon as a so-called
“healing” effect [21,36], in which the blocked features are
restored by the mode transformation at the cost of the
shadow moving elsewhere in the beam profile. These
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FIG. 4. PB phase measurement results. (a) Measured PB phase
as a function of γ using the centroid of the blocked beam (circles,
top panel) and interferometric measurements (diamonds, bottom
panel). The noninterferometric results are wrapped onto ½0; 2πÞ
for comparison with the interferometric ones. Error bars are
shown for both, as well as the theoretical value (gray line).
(b) Measured intensity of the transformed blocked beam (plotted
on a log scale) with centroids as red crosses, for different γ. The
symbols at the insets correspond to the markers in (a).

γ = 0.7π

FIG. 5. Evolution of the intensity distribution of a blocked HG
beam as the Gouy phase varies, and the corresponding elliptic
trajectory traced by the centroid for a fixed PB phase.

γ =0.0 π
γ =0.2 π
γ =0.4 π
γ =0.7 π
γ =0.9 π

FIG. 6. Elliptic trajectories traced by the centroid given a
constant PB phase determined by the values of γ (between 0
and 0.9π). The solid curves correspond to the theoretical expect-
ation. Error bars for centroid determination are included in both
directions. The arrowheads indicate the location of zero Gouy
phase and the direction of its increase.
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results highlight the conceptual power of the ray picture as
a way to understand the internal structure of the beam and
provide an example of the similarity of the behavior of rays
and intensity centroids according to Ehrenfest’s theorem,
not only for evolution under free propagation but also under
the more complex modal transformations considered here.
Finally, while we focused on geometric phases for struc-
tured beams, variants of this approach can be applied to
other incarnations of geometric phase through the obser-
vation of the effects of perturbations in the incoming state.
For polarization, for example, a dichroic element can be
used to modify the initial polarization, whose effect on the
output would reveal the geometric phase [37,38].
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