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Abstract

®
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An analytic extension to the nonparaxial regime of the full-Poincaré (FP) beams is presented.
Instead of the stereographic mapping used in the paraxial case, these FP fields are defined in
terms of a mapping from the polarization Poincaré sphere onto the sphere of plane-wave
directions. It is shown that multipolar fields with complex arguments can be used to implement
this mapping and provide closed-form expressions. The three-dimensional polarization
singularities of the resulting fields are studied with the help of auxiliary fields presenting
vortices at points where the polarization is circular or linear. Finally, the Mie scattering and
trapping properties of the FP fields are studied, both of which are greatly simplified by the

choice of fields.
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1. Introduction

The study of structured light has seen significant growth in the
last decades, leading to applications in numerous fields such as
imaging, information transfer, and micromanipulation [1-3].
This is in large part due to the development of efficient and
accessible methods for structuring light, such as the generation
of phase singularities through diffraction holograms as pro-
posed by Soskin and collaborators [4—6]. These methods have
since evolved, and now allow shaping all of light’s degrees of
freedom [7-10], including polarization [3, 11]. For example,
the use of radially and azimuthally polarized light has expan-
ded the control of optical traps [12] and the generally nonsep-
arable nature of modal and polarization structure of light has
proven useful for quantum information applications [13, 14].

* Author to whom any correspondence should be addressed.
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Just like scalar fields can present phase singularities,
nonuniformly polarized vector beams generally possess polar-
ization singularities [15-19]. These structurally-stable fea-
tures come in two types: C points, which are points of cir-
cular polarization where the direction of the major axis is
ill-defined, and L points, which are points of linear polariz-
ation where handedness is ill-defined. Particular emphasis has
been placed on the study of C points, since they trace lines
in three-dimensional space, which can form closed loops and
knots, even in the paraxial regime [20-24]. C points can be
further classified according to the distribution of the polariza-
tion lines traced by the major axes of the surrounding polariz-
ation ellipses. There are three main types of C points: ‘lemon’,
‘star’, and ‘monstar’, where one, three, and an infinite number
of polarization lines terminate, respectively. These types of C
points are the ones that appear ‘in the wild’, i.e. in random
fields [16, 17, 21]. However, higher-order singularities can be
generated with purposefully designed fields [19, 25-27]. Note

© 2021 IOP Publishing Ltd  Printed in the UK


https://doi.org/10.1088/2040-8986/abe01f
https://orcid.org/0000-0002-3451-6684
https://orcid.org/0000-0001-7037-5383
mailto:rodrigo.gutierrez-cuevas@fresnel.fr
mailto:miguel.alonso@fresnel.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/abe01f&domain=pdf&date_stamp=2021-3-19

J. Opt. 23 (2021) 024005

R Gutiérrez—Cuevas and M A Alonso

that for the very restrictive case of purely linearly-polarized
fields there is a third type of polarization singularity, V points
[25], where the direction of linear polarization is not defined,
e.g. at the axis of radially and azimuthally polarized fields.
In this work we consider the more common case of fields in
which the polarization ellipticity changes in space.

Full-Poincaré (FP) beams are examples of vector beams
with nonuniform polarization distributions, which were intro-
duced as a way to map all possible paraxial polarization states
onto each transverse plane of a beam [28-30]. They can be
expressed as the superposition of orthogonaly-polarized Gaus-
sian and vortex Laguerre-Gauss beams. At the waist plane this
superposition can be written as

E=E, (cosa Vi +sina£ei¢ vz)e*pz/wz, (1)

w
where vl - vo = 0, |v;|| = [|v2|| = 1, w is the waist of the Gaus-
sian, « is the mixing angle controlling the ratio between the
two polarization components, Ej is a global amplitude factor,

and p and ¢ are the polar coordinates. Fully polarized paraxial
light is commonly described with the help of a Jones vector,

9 . 9 .
v(d,) = cos Ee*‘“"/zar + sin Ee‘“"/ze_, 2)

written here in terms of the circular polarization vectors
€+ = (X+iy)/2'/2. The angles ¥ and ¢ are the polar and azi-
muthal coordinates on the Poincaré sphere (PS) as shown in
figure 1. Comparing equations (1) and (2), it can be seen that,
geometrically, the polarization distribution of a FP beam is
given by a stereographic projection of the PS onto the trans-
verse plane mapping the polarization v; to the origin and v,
to infinity. In particular, if v; and v, are chosen to be left-
and right-circular polarization vectors, the resulting FP beam
exhibits either a lemon or star C point polarization singular-
ity at the origin. For a FP beam of the type in equation (1)
the mapping is one-to-one; however, by changing the vortex
charge and/or considering higher-order radial modes, the PS
can be mapped several times onto to transverse plane. These
higher-order FP beams can also lead to higher-order polariza-
tion singularities [25, 26, 30, 60]. Generalizations of FP beams
into the nonparaxial regime have been proposed [28, 31, 32,
60], but these are either not given by closed-form expressions
or are not defined in terms of a simple geometrical mapping
allowing a direct extension to higher-order fields.

Here, it is shown that a geometrical mapping is possible in
the nonparaxial regime between the PS and the sphere of dir-
ections (SDs). This is achieved by considering superpositions
of simple multipoles evaluated at complex arguments [33, 34]
leading to closed-form solutions of Maxwell’s equations that
reduce to LG beams in the paraxial regime [35-38]. It is shown
that, for these fields, the transverse polarization distribution
(which only takes into account the transverse components of
the electric field) mimics that of the paraxial FP beams. Addi-
tionally, the full three-dimensional structure is examined with
the help of auxiliary complex scalar and vector fields present-
ing phase vortices at points where the polarization is circular
or linear. Lastly, the Mie scattering and trapping properties of
the nonparaxial FP fields is studied.

)
)

-1.0

-1
(97

Figure 1. Mapping of the PS (left) onto the SD (right) through the
function ¥, ! given in equation (6). The axes of the PS are the
normalized Stokes parameters s; and the inset shows the area around
s3 = —1. The amplitude and polarization distribution of the
plane-wave spectrum for the lemon FP field with k< =5 and

& = m/4, which determine the parameter y of the mapping, are
shown in the SD.

2. Definition of nonparaxial FP fields

2.1. Sphere-to-sphere mapping

An electromagnetic monochromatic field with wavenumber k&
propagating in free space can be written as a superposition of
plane waves,

E(r) = / A(n) ™ rdQ, 3)
4

where the unit vector u = (cos ¢ sinf, sin¢siné,cosf) indic-
ates the direction of propagation of each plane wave, para-
metrized here in terms of the polar and azimuthal angles 6
and ¢. The plane-wave spectrum A (u), which is proportional
to the far field, is a vector field defined over the SDs for u.
The transversality condition implies that u- A(u) = 0 so that
A is tangent to the surface of the SD and can be expressed
in terms of a polarization basis conformed of a pair of ortho-
gonal vectors V, and u x Vl satisfying u -V, = 0. Locally,
these vectors span a plane in which we can define a polar-
ization state through the standard paraxial formulas. There-
fore, we can generalize FP beams to the nonparaxial regime
by means of the more natural mapping from the PS to the
SD (see figure 1). This mapping is further motivated by the
fact that, in the paraxial regime, only the small cap of the SD
in the forward direction is occupied by the plane-wave spec-
trum, which then coincides with the 2D Fourier transform of
the paraxial beam at the waist plane; for paraxial FP beams,
this Fourier spectrum exhibits a polarization pattern similar to
that in configuration space, so that the stereographic projection
of the PS also applies to the plane-wave spectrum.

The implementation of this sphere-to-sphere mapping
requires an appropriate polarization basis over the SD.
A good option is V) = exp(ir/4)(u x e+ X u=iu x e )
[37], which maps circular polarization according to parallel
transport from the forward +2 direction and is therefore con-
sistent with the Richards—Wolf theory of focusing systems
[36, 37, 39, 40]. These vectors are not normalized to unity;
instead they satisfy ||V{*)|| = cos(6/2) and thus vanish as u
approaches —z, which is a degenerate singularity of this basis
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[36, 37, 41], chosen to be as distant as possible from the +z
direction around which the plane-wave spectrum of directional
fields concentrates.

These considerations raise, in turn, requirements on the
mapping from the PS to the SD. This mapping must mimic
the plane-wave spectrum of focused fields and hence allow the
concentration of most polarization states within the forward-
propagating hemisphere. By rewriting the Jones vector in the
following form

e_iv/2 :
3 [(1 +cosd)ey + sinﬁe‘we] , @
2

v(d,0) =

2cos

we can see that one way to concentrate polarization states
around the forward direction is to write the plane-wave spec-
trum for a lemon (+) or a star (—) FP field as

AD(8,6) = E [(1 FeosO)VEE + vsinﬁei‘f’Vf)} 76),
5

which has the same basic form as the Jones vector in
equation (4) but changes the ratio of each polarization by the
introduction of the parameter . This change of ratio defines
the mapping

2
94(0) = T tan~! (icot9+ ! 2] tani), (6)
between the PS and the SD. For the lemon FP field, when
v > 1 the circle of linear polarization for A is moved into
the forward-propagating hemisphere while leaving the left-
circular polarization fixed at u, = —1, as shown in figure 1 and
two lemon C point singularities appear at the poles. For the
star FP fields, the locations of right and left circular polariz-
ations are reversed and two star C points appear at the poles.
Note that the mapping defined by equations (5) and (6) over
the SD is analogous to the one enacted on the PS by a dichroic
element [42].

2.2. Plane-wave spectrum

Equation (5) allows concentrating most of the polarization
structure into the forward-propagating hemisphere. The same
type of concentration is then needed for the amplitudes of
the plane waves through the function f(#). Many such weight
functions could be used but not all would lead to a simple
analytic expression in configuration space. One option that
provides both an analytic expression for the electric field
through equation (3) and a continuous connection to the
paraxial regime is f(0) =exp(k(cosf) [43]. This real expo-
nential can be interpreted as an imaginary shift z — z — i in
configuration space [33, 34]. Assuming a normalized plane
wave spectrum according to [ [|A|/dQ = |Ey|?, the expres-
sion for the lemon and star FP fields in equation (5) can be
rewritten as

Figure 2. Effect to the parameters ¢ and § on the plane-wave
spectrum and its polarization distribution: for the (a)—(c) lemon and
(d)—(f) star FP fields with (a), (d) k( =5 and § = 7/4, (b), (e) k(=1
and 0 =7/4, and (c), (f) k( =5 and 6 = «/3.

A® @) = Lo

4

[a,(() cosd (1 +cosh) V{F)

3 )
_ OéV(C) sind \/;Sineeltﬁ VlS:F):| ekCcos@

= Eaf ()03 VI [Yoo(8.6) + = 10(6.6)]

—av(<>sin6V.E“F>Y1,1(9,<z>)}e"““9, (7

where «, and «, are normalization coefficients. In order to give
a hint of how these expressions can be generalized to higher
orders, the second form is written in terms of the spherical
harmonics,

20+ 1)(1—m)!

ey cose™ @)

Yl,m(aad)) = O-rnn1

where 0, = sgn(m+ 1/2) and P,(m) is the associated Legendre
polynomial. (Note that other FP fields can be generated by
replacing the two polarization vectors Véi) with two ortho-
gonal linear combinations of these vectors.) The parameter ~y
introduced in equation (6) becomes a function of § and ¢,

~(8,¢) = zzgg tand. ©)

The effect of ¢ and § on the amplitude and polarization distri-
bution of A is shown in figure 2. The directionality parameter
¢, which corresponds to the Rayleigh range in the paraxial
limit, has a similar effect on both the amplitude and the polar-
ization distributions: for increasing ¢ they become more con-
centrated around the +Z direction, whereas the parameter ¢§
only controls the ratio of the two orthogonal components thus
allowing changing the polarization distribution independently
from the focusing properties.
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In the paraxial limit, i.e. for k{ > 1, the plane-wave spec-
trum in equation (7) expressed as an exponential weight times
the superposition of Yo and Y ; indeed corresponds to the
superposition of a Gaussian and the lowest-order Laguerre—
Gauss mode with a vortex [as the one in equation (1)]. How-
ever, note that the term Y is needed to achieve the one-to-
one mapping between the spheres. This term alone tends in
the paraxial limit to an LG beam with a higher-order radial
structure, which is not present in the original FP beams [see
equation (1)] [33, 34, 36, 37]. This extra term is a nonparaxial
correction whose relative amplitude vanishes in the paraxial
limit. For k¢ > 3, the relative weight of this extra term is less
than 5%, hinting that its effect is only significant for consid-
erably focused fields. Therefore, the FP fields defined here do
reduce to the standard FP beams in the paraxial limit.

2.3. Configuration space

The advantage of using imaginary shifts in z is the result-
ing simplicity of the expressions in configuration space, as
opposed to the most common approach of using the Richards—
Wolf theory which usually requires numerical integration
[31, 32, 39, 40]. Using the relation

Ag(r) = / Y () ™ de, (10)
4

satisfied between the spherical harmonics and the scalar mul-

tipoles,

Al,m(r) = 47Tiljl(kr) Yl,m(erv ¢r)y (11)

where j; are the spherical Bessel functions, and the fact that
the polarization operators in configuration space are obtained
by performing the substitution u — V /ik, the FP fields in con-
figuration space can be written as

E®) (r;¢) = Eo{a,(C)cosd \AS [Ao,o(r —i¢z)

1 o
+ ﬁAl,O(r - ICZ)}

—a,(¢)sind VI AL (r — igi)}, (12)

where

1 1
Vr(i):—eiXVXV:FfeixV.

12 k (13)

Note that the derivatives can be computed analytically using
the recurrence relations for spherical Bessel functions and
associated Legendre polynomials, thus providing a closed-
form expression for the fields in configuration space. An
implementation of this type of fields can be found in [44]. As
shown in figure 3, the amplitude distribution depends on the
polarization distribution. For both the lemon and star FP fields
the amplitude distribution is no longer circularly symmetric
but carries a distinct signature from the polarization distribu-
tion in the SD. This coupling between amplitude and polariz-
ation has the same origin as the spin—orbit coupling [45].

-6-4-20 2 4 6

-6-4-20 2 4 6
kx kz kx

-6-4-20 2 4 6 -6-4-20 2 4 6

Figure 3. Amplitude distribution for the lemon (top) and star
(bottom) FP fields, with k{ =5 and § = 7/4, over the x—y plane (left)
and the y—z plane (center), and the amplitude over the x—y plane
with the transverse polarization distribution overlaid (right), with
the dashed blue line corresponding to the L line.

Figure 3 also shows the transverse polarization distribution
(which consider only the x and y components of the field) at
the focal plane. This distribution resembles that of the paraxial
FP beams and the one encoded in the plane-wave spectrum.
Nonetheless, focusing causes some small changes such as a
slight deformation of the L line in the lemon FP due to the
asymmetric shape. It should also be noticed that the polariz-
ation pattern at the focal plane is rotated by 45° with respect
to the one encoded in the plane-wave spectrum due to the dif-
ference in Gouy phase acquired between the two polarization
components as they propagate from the focal plane to the far
field [28].

3. True polarization singularities

3.1 Transverse vs true polarization singularities

The transverse polarization of electromagnetic fields exhib-
its an analogous behavior to the polarization of paraxial fields
since it only takes into account two field components. In partic-
ular, upon propagation, transverse C singularities trace three-
dimensional lines while L singularities are distributed across
surfaces. This fact can be understood from the number of con-
straints required to obtain each type of singularity [15, 16, 18].
C point singularities are formed when the real and imaginary
parts of the electric field vector are orthogonal and have equal
norm. These two constraints restrict the C singularities to lines
in space. L points, on the other hand, are formed when the
phase difference between the two components is zero modulo
. This single constraint restrict L points to surfaces in space.

In the nonparaxial regime, the longitudinal component
becomes non-negligible and thus must be taken into account
for a complete description. This extra component allows the
polarization ellipse to have an arbitrary 3D orientation. The
true circular and linear polarization singularities, denoted
respectively by CT and LT, take all three components into
account [15, 16, 18]. Both these singularities behave similarly,
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-6-4-20 2 4 6
kx kx ke

-6-4-20 2 4 6 —6-4-20 2 4 6

Figure 4. Modulus squared (top) and argument (bottom) of 1) for
the lemon FP field with k{ =5 and 6 = 7/4 at (from left to right)
kz=0, 1/2 and 1. The circles and crosses represent, respectively,
C7 points (zeros of 1) and LT points (maxima where || =1).

tracing lines across space, due to the number of constraints
needed to define them: for a CT point the real and imaginary
parts of the electric field must be orthogonal and of equal norm,
as in the transverse case; for LT points, the phase difference
between the three components must vanish modulo 7, hence
imposing also two constraints.

The dimensionality of transverse (or paraxial) and true
polarization singularities can also be understood from the
corresponding geometrical representations of polarization.
The paraxial or transverse polarization can be represented as
a point on the surface of the PS. Circular polarization cor-
responds to isolated points (the poles), while linear polariz-
ation spans a line (the equator). The prescription of three-
dimensional polarization requires instead two points on the
surface of a unit sphere rather than one [46, 47] and the limit-
ing cases of linear and circular polarization correspond to these
two coinciding or being antipodal, respectively, both situations
imposing the same number of constraints.

3.2. True C point singularities

The electric spin density vector is defined as

Im(E* x E)

S= "o
[

(14)
which points along the normal of the polarization ellipse and
whose norm determines the ellipticity. This norm of this vector
is unity at CT points and zero at LT points. Another relevant
quantity is the complex scalar quadratic field

_E-E

Y=
[[E?

5)

which vanishes at CT points where it exhibits phase singular-
ities. The vortices of v greatly simplify the identification and
tracking of CT lines across space [16, 22, 48, 49]. These two
quantities are related via

S|P =1— |y (16)

-6-4-20 2 4 6

kx

i
-6-4-20 2 4 6
kx kx Jex

-6-4-20 2 4 6

-6-4-20 2 4 6

Figure 5. Modulus squared (top) and argument (bottom) of ¢ for
the star FP field with k{ =5 and § = 7/4 at (from left to right)

kz =0, 1/2 and 1. The circles and crosses represent, respectively,
CT points (zeros of 1) and LT points (maxima where |t)| = 1).
These plots use the same color palettes as figure 4.

Figures 4 and 5 show the modulus squared and phase of
for the lemon and star FP fields, respectively. Both fields have
a CT point near or at the transverse C point (which lies at the
origin); for the lemon FP field it is translated slightly along the
positive y axis due to the field’s asymmetry while for the star
FP field it is exactly at the origin. Both fields present other CT
points at regions where the fields become negligible.

3.3. True L point singularities

LT points correspond to the zeros of the electric spin field,
which is real. It is possible to also define a complex vector
field whose vortices facilitate tracking the LT lines:

£= iSX)v

1
—(S; —iS,, Sy —1S;, 5, — a7

V2
which vanishes where S does, since it satisfies || €|| = ||S||. The

components of this field can be written in terms of the electric
field as

2

6= s Im(EEE) +Im(ER)), (180)
2

&= ”\éﬂz Im(EJE.) +iIm(EJE,)] , (18b)
2

£ = ||\1§ﬂ2 Im(EE,) +iIm(EIE,)]. (18¢)

This definition is analogous to the one used to introduce the
Stokes fields given by complex combinations of the Stokes
parameters providing a simple way to identify polarization
singularities in paraxial fields [27, 50, 51]. These expressions
show that a given component ; vanishes if one of two condi-
tions is met; either the corresponding electric field component
Ej is zero or it is in phase or 7 out of phase with the other two
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Figure 6. Argument of the components of £ for the lemon (top) and
star (bottom) FP fields with k¢ =5 and § = 7/4, with L points
marked by crosses. These plots use the same color palette as figure 4
for the phase.

components. The latter indicates the presence of an LT point
while the former is a special case which can be an LT point if
any of the other components of £ vanish.

Figure 6 shows the argument of each component of £ for the
lemon and star FP fields presenting different possible behavi-
ors. The points marked with a cross indicate the presence of
an LT point and they correspond to zeros for all three compon-
ents of £. These also correspond to the maxima of || shown
in figures 4 and 5. Other vortices that do not correspond to
LT points can be seen in figure 6; these are points where the
corresponding component of the electric field is zero but the
remaining two components are neither in phase nor 7 out of
phase, as evidenced by the lack of vortices for the other com-
ponents of & at that location. Note that both FP fields no longer
have a line of linear polarization across the transverse plane but
rather a set of three LT points, which are equally distributed
azimuthally for the star FP field but not for the lemon FP field.

3.4. True polarization lines

Upon propagation, the CT and LT points form lines that can
either remain open or form closed loops. Figure 7 shows these
trajectories, which have been found numerically, along with
transverse cuts of the amplitude of the field. For the lemon
FP field all the singularities rotate around the origin under
propagation, and two of the LT points merge to form an
unknotted closed LT loop, an unknot. This loop becomes smal-
ler/larger for (more/less focused) fields with smaller/larger (.
The CT line near the z axis turns around it and approaches
it asymptotically away from the focal region. For the star FP
field, on the other hand, the singularities rotate around the ori-
gin but remain open since the threefold symmetry prevents
any two of them from merging, and the central CT line coin-
cides exactly with the z axis. For both FP fields, the CT points
that are further from the origin spiral out away from the focal
plane moving further into regions where the intensity is negli-
gible (figures 4 and 5) and are thus not shown in figure 7. Note
that LT points always coincide with transverse L points (but

Figure 7. Trajectories of the LT (blue) and CT (red) points for the
lemon (top) and star (bottom) FP fields with k< =5 and 6 = n/4.

not conversely), as opposed to CT points. This confines LT
lines to the surfaces traced by the transverse L points. These L
surfaces need to be topologically different from a cylinder in
order to support knotted or linked LT lines. However, for the
FP fields studied here, the L surfaces are topologically equival-
ent to cylinders and can therefore support only open lines and
unknots.

4. Mie scattering of FP fields

An advantage of the simple form of the FP fields defined
here is that their multipolar decomposition can be computed
analytically given any relative position between the focus of
the multipolar basis and that of the FP fields. Therefore, the
FP fields lend themselves to an analytic treatment of their
scattering by a spherical particle, albeit with an infinite sum,
from which the induced forces and torques can be computed
[38, 52, 53] without recurring to Rayleigh’s approximation
[40, 54]. Figure 8 shows the total field after being scattered
by a spherical particle of radius kR =3 and refractive index
vo=134+10"% in free space, for both lemon and star FP
fields. Note that the scattering changes significantly the intens-
ity profile of the fields, but not the polarization distribu-
tion which is topologically stable. This can be appreciated in
figure 8 where the polarization distribution is deformed but the
lemon and star C points are still present.

Having solved the scattering problem, the forces and
torques induced on the scatterer can be easily computed
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Figure 8. Amplitude distribution for the total field generated by the
scattering of the lemon (top) and star (bottom) FP fields, with k( =5
and § = 7/4, over the x—y plane (left) and the y—z plane (center), and
the amplitude over the x—y plane with the transverse polarization
distribution overlaid (right). The scattering particle is a sphere with
refractive index v = 1.3 + 10 ~*i and radius kR =3 located at

kr, =(—=2.5,1.5,1). The yellow circles show the transverse cut of
the sphere by the corresponding plane.
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Figure 9. Variation of the y component of the force (top) and the z
component of the torque (bottom) along the y axis, exerted by a
lemon FP field (k¢ = 10 and § = 7w/4) on a spherical particle with
index of refraction v = 1.1+ 10 ~*i (left) and vy = 1.3+ 10 *i
(right) as a function of its radius R.

[38, 55]. Figure 9 shows the variations of the y component of
the force and the z component of the torque along the y axis
for the lemon FP field. Due to the field’s asymmetric intensity
distribution, the zero point of lateral force is offset to y < O for
smaller particles. However, surprisingly, for larger particles
this zero force point is shifted to y > 0. Both shifts become
more pronounced for particles with a higher real part of the
refractive index. Another interesting feature is that the z com-
ponent of the torque can take negative values at the edges of the
focus even if the total angular momentum of the surrounding
vortex field is zero due to its polarization opposite to the vortex
charge.

1.50 o
Lo N -
ER . \}\\ __lﬁgzg
g 05 N Tl
= 0.0 \\W
%% —-0.5 N
-1.0 \\i\
N,
-1.5" S
-2 -1 0 1 2

ky
~ 04 I, Vo) o
5 N S
5 o030\ /N L
X 02 /s SN X
SR SR\
=) Lodmn, AN —5 =3
B 0077 S\ W T o
> -017 N\ =
-0.3
-5 0 5
ky ky

Figure 10. Variation of the y component of the force (top) and the z
component of the torque (bottom) along the y axis, exerted by a star
FP field (k¢ = 10 and 6 = n/4) on a spherical particle with index of
refraction vp = 1.1 + 10 % (left) and vy = 1.3 + 104 (right) as a
function of its radius R.

Figure 11. Variations of the z components of the force (top) and
torque (bottom) along the z axis, exerted by a star FP field (k¢ = 10
and § = 7r/4) on a spherical particle with index of refraction

v = 1.1+ 107* (left) and v = 1.3 + 10 ™" (right) as a function
of its radius R.

Given the symmetric shape of the star FP field, a point of
zero transverse force is always located at y=0 and is stable
in this case, as shown in figure 10. This allows on-axis trap-
ping if the particle properties are chosen correctly. Trapping
in three directions is only possible if the z component of the
force also presents a zero point along the z axis with negat-
ive slope. Figure 11 shows that, as a general rule, it is easier to
trap smaller particles with a lower real index of refraction. The
trapping location is located after the focus where the gradient
force balances the radiation pressure. The presence and loc-
ation of a stable point also depends on the degree of focus-
ing: a field that is more focused produces a greater intensity
gradient closer to the focal region thus increasing its trapping
capabilities, as shown in figure 12. These observations are in
line with intuition.
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Figure 12. Variations of the z components of the force (top) and
torque (second row) along the z axis, exerted by a star FP field with
0 = /4 as a function of the degree of focusing ¢ on a spherical
particle of radius kR = 6 and index of refraction vp = 1.1+ 10 -4
(left) and vy = 1.3 + 10 % (right).
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Figure 13. Variations of the z components of the force (top) and
torque (second row) along the z axis, exerted by a star FP field with
k¢ = 10 as a function of the ratio d on a spherical particle of radius
kR =6 and relative index of refraction vy = 1.1+ 10 ~*i (left) and
1o = 1.3 4 10~ (right).

The torque induced by the star FP field along the z axis
has only a z component, which is highly dependent on the
size of the particle (see figure 11): if the particle is small
then it only interacts with the inner part of the field which
mainly carries left-circularly polarized light generating a neg-
ative torque; on the other hand, if the particle is large then it
is affected by the vortex in which the orbital and spin angular
momentum couple constructively in the opposite sense than
the angular momentum of the inner part of field. Therefore,
the z component of the induced torque goes from being neg-
ative for smaller particles to being positive for larger particle.
Alternatively, if the field is more focused then the region of
left circular polarization shrinks, hence increasing the effect
of the outer region on smaller particles. The behavior of the
induced torque as the focusing properties are changed is shown
in figure 12 where its sign changes as the field is more focused.

The parameter d, controlling the ratio between the two ortho-
gonal polarization components, can also be tuned to obtain a
desired effect. As already mentioned, this parameter changes
the spread of the polarization distribution without changing the
level of focusing. This effect allows the control of the induced
torque without affecting the trapping properties of the field, as
shown in figure 13. It can then be used to twist the trapped
particle by generating a torque that changes sign on each side
of the trapping location.

5. Concluding remarks

In the paraxial regime FP beams are defined through the ste-
reographic mapping of the PS onto the transverse plane. How-
ever, they can also be defined through a stereographic mapping
from the PS onto the Fourier plane. This alternative view was
exploited here to define nonparaxial FP fields through a map-
ping of the PS onto the SD, which is the nonparaxial exten-
sion of the Fourier plane for monochromatic fields. The map-
pings of polarization and amplitude were chosen so that the
resulting fields ha analytic expressions in terms of vector mul-
tipoles evaluated at complex arguments. It was shown that the
transverse polarization has the same generic structure as of the
paraxial FP beams.

The true polarization singularities, obtained by taking into
account the three-dimensional nature of polarization, were
studied with the help of the auxiliary fields ) and &. The lat-
ter was used to aid in the identification of LT points since it
exhibits phase vortices in its components at LT points, much
like ¢ facilitates finding CT points. These true singularities
trace lines across space that either remain open or form closed
loops.

While the original FP beams were introduced as a way to
map all paraxial polarization states onto the transverse plane,
in the nonparaxial case it becomes impossible for a mono-
chromatic field to span all possible three-dimensional polariz-
ation states. This is a simple consequence of the difference in
dimensionality between the polarization and physical spaces;
the former is a four-dimensional manifold (the product of two
spheres [46, 47]) while the latter is the three-dimensional Euc-
lidean space.

Several generalizations to this work are possible. One
would be the extension of the sphere-to-sphere mapping
to include higher order (radial and azimuthal) FP fields
by increasing the number of cycles in the polar and azi-
muthal angles. This would involve replacing the spherical
harmonics in equation (7) by higher-order ones, so that the
field can still be expressed analytically in terms of multi-
poles [60]. Also, other polarization singularities could be
considered, such as the monstar or other asymmetric struc-
tures [56, 57]. Finally, an interesting alternative would be
to consider other forms of the function f(#) introduced in
equation (5) to generate the sphere-to-sphere mapping. One
possibility is to use combinations of real exponentials, lead-
ing to sums of CF fields with different values of the para-
meter (, as in a type of basis function introduced recently
[37, 58, 59].
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