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Abstract

Based on the operator formalism that arises from the underlying SU(2) group structure, a formula
is derived that provides a description of the generalized Hermite—Laguerre-Gauss modes in
terms of a Jones vector, traditionally used to describe polarization. This identity highlights the
relation between these generalized Gaussian beams, the elliptical ray families, and the Majorana

constellations used to represent structured-Gaussian beams. Moreover, it provides a
computational advantage over the standard formula in terms of Wigner d functions.

Keywords: Gaussian beams, Poincaré sphere, Jones vectors, Majorana representation, structured
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Hermite—-Gauss (HG) and Laguerre—Gauss (LG) modes are
among the best-known solutions for free propagating paraxial
fields [1]. They correspond to separable Gaussian solutions in
Cartesian and polar coordinates, respectively, and constitute
complete bases. These beams arise naturally as eigenmodes
for optical cavities and gradient-index waveguides [1], and
have been used extensively to study particle trapping, paraxial
propagation, and data transmission [2—4]. Particularly, LG
modes have been a workhorse for investigations of fields
possessing orbital angular momentum and their applica-
tions [3, 5].

HG and LG beams are said to be self-similar because as
they propagate their intensity profile is preserved up to a
scaling factor. Moreover, any superposition of HG and LG
modes that accumulate the same Gouy phase upon propaga-
tion produces also a self-similar beam [6, 7]. The amount of
Gouy phase gained by HG and LG modes depends linearly on
their total order N which is determined from the usual Car-
tesian indices of HG modes or the radial and azimuthal
indices of LG modes. Therefore, the subset of LG (or HG)
modes with the same total order N can be used as an ortho-
gonal basis for expressing more general self-similar struc-
tured-Gaussian (SG) beams of order N [6, 7].

2040-8978/19,/084001+-05$33.00

One particularly interesting subfamily of SG beams is
that of the generalized Hermite—Laguerre—Gauss (GG) modes
[8-10] which interpolate between HG and LG modes. GG
modes can be obtained experimentally from HG or LG modes
via astigmatic transformations implemented with cylindrical
lenses [8, 11]. These modes can be represented as points on
the surface of a modal Poincaré sphere (MPS), indicating a
mathematical analogy between the modal structure of these
scalar beams and paraxial polarization [12-15], as shown in
figure 1.

The aim of this paper is to further strengthen the math-
ematical analogy between GG modes and paraxial polariza-
tion by showing that the former is also intrinsically linked to a
complex 2D ‘Jones’ vector. This endeavor is warranted by the
fact that it was through the mathematical analogy between the
polarization Jones vectors and the first-order SG modes that
the Poincaré sphere (PS) was first adapted to represent the
modal structure of paraxial beams [12, 13]. Several PS
representations for higher-order beams have been proposed
[6, 7, 14-17] that highlight the mathematical similarity
between modal structure and polarization. However, this
connection is not reflected by the standard formula of GG
modes in terms of Wigner d functions (see equation (3)). We

© 2019 IOP Publishing Ltd  Printed in the UK
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Figure 1. (Left) Poincaré sphere representing the polarization state of
a paraxial field. (Right) Modal Poincaré sphere for the lower order
(N = 1) GG modes.

Amplitude

show in what follows, based on the ray and operator form-
alisms, that a more intuitive and compact expression exists for
GG scalar beams which clearly highlights the analogy with
polarization through the use of Jones vectors.

The first connection between GG modes and polarization
was made in [12] within the context of the Pancharatnam—
Berry phase arising from a cyclic transformation [18-20].
Yet, it took some years for the geometric PS construction,
where the presence of a geometric phase becomes evident, to
be adapted for the description of the first-order (N = 1) GG
modes [13]. Figure 1 shows the PS for polarization as
determined by the Jones vector

“esf)ete a5
v(0, ¢) = cos|—|e 2e. + sin| = |e'2€_, (D
2 2

where, in the context of polarization, e, = (x =+ iy)/2'/2
represents circularly polarized light. Throughout this work,
0 <6< 7and 0 < ¢ <27 denote the polar and azimuthal
angles, respectively, for all the PS treated. For shorthand, the
unit vector u = (uy, Uy, uz) = (cos ¢ sind, sin ¢ sin 6, cos 6)
is used to denote points on the surface of a sphere. Note that
the normalized 2D complex Jones vector v and the real 3D
unit vector u both encode points on the surface of the MPS
through their dependence on the angles 6 and ¢. The first-
order GG modes can be described by a similar expression

GGy i(u; T) = cos (%)e“gLGlyl(r)

+ sin (g)ei%LGl,,l(r), )
where the LG beams play the role of circular polarization,
thus leading to the MPS shown in figure 1. (The index
notation for LG beams is explained below.) In these two
cases, any point on the PS can be expressed as a simple linear
combination of the two states represented by the poles. The
particular choice of (polarization and modal) states used in
equations (1) and (2) is, to some extent, arbitrary. Any pair of
antipodal points could have been used in their stead since it is
their orthogonality that is key. As we will see this observation
remains valid for higher-order modes and permeates into our
main result (see equation (16)). For this reason, when the unit
vector u corresponds to the Jones vector v, then —u corre-
sponds to ¥(0, ¢) = v(r — 0, —¢).

Figure 2. Modal Poincaré sphere for (left) N = 4, { = 4 and (right)
¢ = 2. Also shown are the intensity distributions with the phase
coded in hue for several GG beams with their corresponding
modal spot.

The geometric representation provided by the PS can be
extended to higher-orders modes [14, 15], where the two
poles correspond to LG modes of opposite vorticity, the
equator corresponds to rotated HG modes and all other points
correspond to GG modes connected via astigmatic transfor-
mations. This construction is supported by the formula giving
the GG modes in terms of LG modes [7, 17, 21-23]

Z

GGy (u; 1) = "”‘M

(OLGy ¢(r), 3

v
2°

where dnf;,,m (0) is the Wigner d function and the transverse
field profile for the LG mode at its waist plane is given by
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An extra phase factor was introduced in the definition of the
LG beams to guarantee that they satisfy the Condon—Shortley
convention [7, 17, 24, 25]. Note that here we label these
modes by the total order N and the azimuthal index ¢, with
¢ ranging from —N to N in steps of two. These are related to
the usual radial p and azimuthal ¢ indices used to denote LG
beams via N = 2p + |{|. They can also be related to the
Cartesian indices m and n along x and y, respectively, used for
HG beams through N=m + nand { = m — n.

That is, for given N, ¢, GG modes are still uniquely
determined by the coordinates 6 and ¢ over the MPS. In
particular, HG modes are given by

r

“

N/2 N

P

l
N 2
2

HGy (r) = (m/2)LGy,e(r), &)

o
2

which include Condon—Shortley phases. Thus, GG modes
interpolate between HG and LG modes with the same N and
¢ through astigmatic transformations [11, 22], and a different
MPS is needed for each pair of indices N and ¢, as shown in
figure 2 for N = 4 with £ = 4 and ¢ = 2. The point u that
represents a mode is henceforth referred to as the modal spot
(MS). This geometric representation, however, is limited to
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Figure 3. (From left to right) Intensity distribution, elliptic-ray
families, and Poincaré path (PP) for the GG beam of order N = 6
and ¢ = 4 with = 7/6 and ¢ = /2. The color of the ellipses of
rays corresponds to that of the PP.

the description of GG modes. Note also that for N > 1 the
GG modes do not correspond to a simple linear combination
of the two modes represented by the poles, but to a linear
combination of all HG (or LG) modes with the same total
order N.

Another analogy with polarization arises in the context of
semiclassical estimates for SG beams [6, 17, 25]. Because
they are self-similar, the two-parameter family of rays used to
describe SG beams is given by an ensemble of ruled hyper-
boloids whose cross section at any plane of constant z is an
ellipse. At the waist plane, it turns out that a convenient
parameterization of the transverse position Q = (Q,, Q,) and
direction P = (P,, B,) of the rays within each hyperboloid is
through a Jones vector via

q+ip = VN + 1v(0, p)e ', 6)

where Q = wq and P = 2p/kw. As T varies, both Q and P
trace an ellipse which, in analogy with polarization, can be
represented by a point on a ray PS (RPS) [6, 20, 25]. The
ensemble of elliptic ray families (i.e.ruled hyperboloids)
describing a SG beam corresponds to a Poincaré path (PP) on
the RPS. For GG beams the PP corresponds to a circle cen-
tered at the MS and whose radius depends on ¢ (with higher ||
corresponding to smaller radii). Figure 3 shows the PP, the
rays and the corresponding intensity profile at the waist for a
GG mode. This construction enables the representation of
more general SG beams. Moreover, it allows SG beams with
the same total N to coexist in the same PS, thus solving the
limitations of the MPS.

Dressing the rays with appropriate Gaussian contribu-
tions leads to a semiclassical estimate that is exact for GG
modes [6, 25]. After integrating in 7, this estimate takes the
form of a continuous superposition of extremal (¢ = N) GG
beams which can be identified as the coherent states in the
reduced space of SG beams with total order N [7]. In [6],
these were expressed as a complex-valued HG beam of the
form

GGy n(V; 1) = (V- VN 2Uy(v; 1) Up(¥; 1), @)
where
Ui(vi 1) = ! ¢ ieH, 2v.r (8)
w~/T 2/ zj' WV -V

Notice that we used the identity v - v = sin §. The expression
in equation (7) was later formally proven to be the extremal

(¢! = N) GG beam [25]. This complex-valued HG expression
was independently derived in [26] and referred to as a vortex
HG beam, but the connection to the Jones vector was not
made. The expression given by equations (7) and (8) is much
simpler since it is composed of a single term, whereas the
standard one given in equation (3) has N + 1 terms. More
importantly, equation (7) provides a connection to the ray
description through the Jones vector which is made explicit in
the arguments of the GG by using v to denote the location of
the corresponding GG beam on the surface of the MPS,
instead of u. The goal of this work is to find similar
expressions for all other GG modes.

HG and LG beams can also be described through an
operator formalism analogous to that of the two-dimensional
isotropic oscillator [7, 14, 15, 17, 21, 25, 27, 28]. It was
actually for this system that the coherent states in
equations (7) and (8) were first derived [29]. Using Schwin-
ger’s oscillator model [24], HG and LG modes can be
described as eigenfunctions of the operators [7, 17, 28]

~ ., 5 w2( 02 0?

= —_— - - - — 9
1= 53 x* = y9) s (8x2 By %a)
~ 1 w2 92
B=—xy - 22 9b
: szy 4 Ox0dy ©OF)
=~ i O 0

ES Pt 9

3 2( N y@x) 90

which satisfy the commutation relation for quantum angular
momentum

&2 = & .
[T s T}] = 09 [7;9 T}] = IZ fijka’ (10)
k
with ¢ being the Levi-Civita tensor.
The standard convention is to take 75 and its eigenfunc-
tions (the LG modes) as a reference, but this choice is arbi-
trary. The most general situation is to consider rotated

o~

versions of the operators Tj:

T (u) = cos b cos ¢T; + cos O sin B — sin 0T, (11a)
B(u) = —sinqSYAI + cos (;ﬁfz, (11b)
T3 (u) = sinf cos ¢T; + sin @ sin T + cos 0T (11¢)

These operators satisfy the same commutation relation as their
unrotated versions. Moreover, the eigenvalue equation

- 4

L) GGy (u; 1) = > GGy e(u; 1) 12)
is satisfied [17]. If the GG beam satisfying equation (12) is
taken as a reference then annihilation and creation operators
can be defined as

T.(uw) = Ti(w) + i), (13)
which satisfy
T.(w)GGy 4(u; 1)
1
= EJ(N F O(N £ £+ 2) GGy rza(u; 1), (14)

where the Condon—Shortley convention was assumed.
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Starting from the extremal GG mode, GGy y, one can
then find all other modes by successive application of the
appropriate annihilation operator. Particularly, using the
expressions given in equations (7) and (8), and several
mathematical identities involving the Hermite polynomials, it
can be shown that

T () U, (v; 1)U, (V; 1)
= —iym@n + 1) Uy 1(v; ©) Uy 1(¥; 1)

—cotdym(m — 1)U, _»(v; r)U,(¥; 1), (15)
from which it follows that
Nt
2, N-L,. .
GGyo(v;it)= > (i) 2 cos’ 6
j=0
LN
xsin2 /6 UM_j(v; r)UL_zfj(V; r).
’ (16)

This equation is the main result of this work. It is worth
pointing out that equation (16) can be anticipated from the
work in [30] which relates two-dimensional extensions of
Hermite and Laguerre polynomials. The first thing to notice is
that this expression has only (N — ¢)/2 + 1 terms, which is
considerably fewer than the N + 1 terms used in the standard
expression in equation (3). The maximum number of terms
required in equation (16) is [N/2 + 1], since for £ < O the
same expression can be evaluated at the antipodal point, —u.
Thus, this formula provides a computational advantage. More
importantly, the reason for this compactness is that the
expression is written in terms of the Jones vectors of the MS
and its antipode. Furthermore, it can be shown through the
use of recurrence relations for Hermite polynomials that the
function Uj; in equation (8) satisfies
J+ 1Uja(vir) = Zzi—\/T;Uj(VQ r) — jU1(v; b,
7)

from which the recursion formulas given in [8, 11, 31] can be
rewritten in terms of Jones vectors as

2v - 1 GGy (V; 1) = N + £ + 2 GGy 1441(V; 1)
+ sin 0N + £ GGy_14-1(V; 1)
+ cos 0N — £ GGy_111(v; 1),
(18a)

—i2V - r GGy o(vi 1) = VN — £ + 2 GGy, 10-1(V; 1)
+ cos Gx/N——i-f GGy_1,-1(V; 1)
—sin0JN — ¢ GGy_1¢41(V; 1).
(18b)

It is worth pointing out that the right-hand side of these
equations is written purely in terms of v.

Another interesting feature emerges from the expression
in equation (16): as ¢ decreases, the order of the polynomial
contributions at the MS u decreases while those at the anti-
podal point increase. This behavior is reminiscent of that

Figure 4. (First row) Intensity distribution with the phase coded in
hue, and (second row) Majorana constellation, with the size
indicating the number of stars, and the PP and (third row) the Q
function for the GG beams of order N = 5 along 6 = 7/4 and

¢ = /2 with (from left to right) £ = 5, 3, 1.

of the corresponding Majorana constellations for GG beams
[7, 32-35]. As was shown in [7], the proper way to extend the
MPS to higher-order modes is through the Majorana repre-
sentation, originally proposed for spin systems, where a general
SG beam is represented by N points (or stars) on the surface of
the modal Majorana sphere. For the particular case of the GG
modes, the Majorana constellation is composed of (N — £) /2
stars at the MS and (V + ¢)/2 at the antipodal point (note that
there are more stars at the antipodal point than at the MS). This
is shown in figure 4 for several GG modes. With each appli-
cation of the annihilation operator ¢ decreases by two (remember
that ¢ changes in steps of two) and a star moves from the anti-
podal point to the MS. This behavior is reflected in equation (16)
where the maximum order of the polynomials exactly corre-
sponds to the number of stars in the constellation.

The Majorana representation is related to the RPS
through the Q (or Husimi) function [6, 7, 36]. Each repre-
sentation uses different features of the Q function to describe
a SG beam: the stars correspond to its zeros and the PP
corresponds approximately to the ridge outlined by the
regions of maximum intensity. This can be seen for the
particular case of the GG beams in figure 4 where the Q
function is shown along with the corresponding MC and PP.
Note that, even though both of these representations are sig-
nificantly more general than the standard MPS, the Majorana
representation is the most general since it can be used to
describe any SG beam without requiring a well-defined PP
(see for example the beams introduced in [7]).

To summarize, the expression for the GG beams in
equation (7) clearly highlights the mathematical analogy
between these modes and polarization through the use of
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Jones vectors. This form also provides direct connections
with more general geometrical representations of SG beams
over a PS: the ray-based PP and the Majorana constellation,
which provide complementary pictures by describing differ-
ent features of the Q function (its maxima and zeros,
respectively). The expression derived for GG modes is not
only more connected to intuition but also more compact, thus
providing a computational advantage by reducing the terms to
less than half of those used in the standard formula in terms of
the Wigner d function. The results presented here reveal
further structure of the MPS for structured light by finding
connections through the underlying SU(2) structure.
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