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A novel type of discrete basis for paraxial beams is proposed,
consisting of monomial vortices times polynomials of
Gaussians in the radial variable. These bases have the distinc-
tive property that the effective size of their elements is roughly
independent of element order, meaning that the optimal scal-
ing for expanding a localized field does not depend signifi-
cantly on truncation order. This behavior contrasts with that
of bases composed of polynomials times Gaussians, such as
Hermite—Gauss and Laguerre-Gauss modes, where the scaling
changes roughly as the inverse square root of the truncation
order. © 2017 Optical Society of America
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Most light beams propagating through free space are not de-
scribed by closed-form expressions. Instead, they are modeled
through numerical evaluation of the angular spectrum or
Fresnel integrals, which correspond to expansions in terms of
continuous basis sets whose elements are plane and (paraxial ap-
proximations to) spherical waves, respectively. In some cases, the
numerical computation can be simplified if a discrete basis ex-
pansion of the field is used instead, as long as the elements have
simple closed-form expressions. In general, the geometry of the
problem dictates which basis to use. For example, if the problem
lends itself to Cartesian coordinates, then Hermite—-Gauss (HG)
beams [1,2] are a natural choice. On the other hand, when
studying beams with rotational symmetry, including those carry-
ing orbital angular momentum [3,4], then Laguerre—Gauss (LG)
beams [1,2] are more suitable. More exotic geometries possess
their own type of natural separable basis (see, for example,
[5]). Within a given geometry, however, there are other possible
bases to choose from, e.g., the elegant modifications to the bases
just mentioned [1,6,7], which give up orthogonality in favor of
ease in notation. Note that orthogonality is usually desirable but
not required; completeness, on the other hand, is needed. Other
types of beams have been proposed, such as the polynomial
Gaussian beams [8,9] and the scattering modes [10], which allow
the study and propagation of beams with more complicated
phase singularities at the initial plane.
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All the bases just mentioned include a Gaussian factor to
limit the spatial extent of their elements to a region where
the field is localized. A Gaussian is convenient because
Gaussian beams are the simplest finite-power (square-
integrable) solution to the paraxial wave equation. To form
the basis, this Gaussian is multiplied by polynomials in the co-
ordinates, which can be made to be orthogonal when using
a weight function involving the Gaussian. These polynomial
factors widen the elements roughly proportionally to the
square root of their order.

Here, we propose using a different approach: rather than
using it as a weight factor, we build new bases by letting
the Gaussian be the argument of the polynomials. That is,
instead of polynomials #imes a Gaussian, the new bases use
polynomials of Gaussians, the polynomial variable being # =
exp(-7?) € [0, 1], where 7 is the (scaled) radial variable in polar
coordinates at the initial plane. Like for LG beams, the order 7 of
the polynomial indicates the number of radial zeros for the new
basis elements, and the azimuthal structure is achieved by a
simple vortex factor 77 exp(ime). Each basis element is then
a combination of simple vortex-Gaussian beams that are self-
Fourier objects and self-similar under paraxial propagation.

Perhaps the main feature of the new bases is that all their
elements have essentially equal effective width, which stands in
sharp contrast with standard bases like LG modes for which the
width of the elements increases with order. That is, while the
LG modes are the natural analogs of the two-dimensional har-
monic oscillator, the new basis elements have more in common
qualitatively with the eigenfunctions of an infinite well poten-
tial or the modes of a drum skin, which are all constrained to
the same region irrespective of mode order. As a consequence of
this property, the optimal transverse scaling for fitting a well-
localized beam with a finite number of elements is roughly
independent of truncation order.

We propose three bases of this type. Two of them are based
on standard polynomials so they are easiest to implement. The
first, however, has elements that are not easy to propagate, so it
is discarded. The second resolves this issue at the cost of its
orthogonality relation involving extra weight functions. The
third is strictly orthonormal with uniform weight, but requires
the definition of new orthogonal polynomials. These bases are,
in turn, compared with the standard LG basis through a couple
of examples that illustrate their main properties.
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Gauss-Legendre (GL) basis. In previous work, an orthonor-
mal basis for nonparaxial fields with rotational symmetry
was introduced [11]. In the paraxial limit, the extension of this
basis to general fields was found to reduce to the form

2 55(m —12 jim
B, (1, 9) = b, e TP, (7)™, (1)
where P‘(Z‘)+n(u) = Pl(:””l) +,(2u-1) is the shifted associated

Legendre function, #n = 0, 1, ... is the number of radial nodes,
m is the vorticity (which can take any integer value irrespective
of n), and the normalization factor is given by
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Here, we consider a normalized radial variable, » = p/a,
where p is the radial coordinate and a is a width scaling
parameter of the basis elements. By using the change of vari-
ables u = exp(-7?), it is easy to verify that the functions in
Eq. (1) are in fact orthonormal over the plane.

For m = 0 these functions become sums of Gaussians with
different widths, and therefore provide a formalization of the
approach in [12,13], where an optimization procedure was
used to find the best fit of Gaussians to any axis-symmetric
beam. By instead using the orthonormal basis elements, the
coefficients can be determined through simple inner products.
For a general integer m, Eq. (1) presents an extension to beams
without rotational symmetry. However, as discussed in [11],
the propagation of these basis elements away from the initial
plane is not given by a simple closed-form expression because
the associated Legendre functions are not polynomials; for odd
m, these functions include a fractional power factor.

Modified Gauss-Legendre (MGL). We now define a second
basis by eliminating the problematic fractional powers, with the
compromise of modifying the orthogonality relation over the
plane. The basis elements are

[ Pl
Mn,m(r) ¢) = bn,me_7 lulw V|m|61m¢, (3)

where the expression in square brackets is a polynomial of the
Gaussian, which (if preferred) can be written in terms of the
Jacobi polynomial as exp(—|m|72/2)P£¢m’m)[2 exp(-7%) - 1].
These elements are orthonormal with respect to the weight
function

W, (r) = [(1 - e7) /7). 4)

Figure 1 depicts this radial weight function for different
values of 7. Notice that as || increases, the region considered
for orthogonality reduces to an increasingly localized patch near
the origin. We can expand any function in terms of this basis as

Fig. 1. Weight function, Eq. (4), for different values of .
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where the coefficients are given by
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Given the nonuniform weight function, this basis does not
guarantee a decrease in rms error (uniformly weighted over the
plane) when adding more terms. However, because the weight
is localized where the fitted functions are expected to be most
important, the accuracy of the fit is comparable to that for a
similar orthonormal basis. Note that this basis coincides with
the GL basis for m = 0 and therefore it is orthogonal in
this case.

Since each basis element is a finite sum of Gaussians with
different widths multiplied by simple vortices, the Fourier
transform (from 7, ¢ to f, ) can be computed via the formula

Flrmet” ety = (-iy"(n /gy e fren 1, (7)

thus allowing the simple propagation of its elements in closed
form and without the use of special functions. Note that this
basis can be used to express fields prescribed in position space as
well as in Fourier space (angular spectrum). Figure 2 shows how
some elements of the basis propagate when used in position and
Fourier spaces, respectively.

Gauss-New (GN). An aspect of the MGL basis that is not
ideal is the need of a nonuniform spatial weight function
for orthogonality. We can, however, use it as a guideline to de-
fine an orthogonal basis with uniform spatial weight. This new
basis has the same structure as that in Eq. (3), but with new
polynomials replacing the Jacobi polynomials:

D, (1, ) = d, e 37 DY ()M, (8)
where the polynomials ng) are defined such that
0 2
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As the angular part immediately gives orthogonality for
m# m', we only need to worry about the radial part for

5
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Fig. 2. Spatial propagation of the intensity of the MGL basis
elements for different values of 72 and 7. The first (second) row shows
the propagation for fields whose initial position (Fourier) distribution

is given by Eq. (3).
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m = m'. The change of variable # = exp(-7?) leads to the

following orthogonality condition that the DS,’”) polynomials
must satisfy:

0

1 )
/ D ) DU (wyw,, (w)du = —"—,  (10)
0 " ”ldn,m|
with the weight in the space of # given by
w,, (1) = (=In u)"u”, (11)

Luckily, there is a standard method [2,14] to construct these
polynomials in terms of their moments:

S
ﬂlm ﬂzm /’tnrj-l
DY (w) =| - D c (12)
R,
1 U et

where the moments y” in this case have the simple form
1 !
(m _ ndy = ] 13
Hr /0 (116" d (n+ |m| + 1)lm+1° (13)

Note that the factor of |m]|! can be taken out of the deter-
minant in order to simplify the calculations. The normalization

is given by 4,,,, = [ﬂ/}ﬁzm)]_l/ 2 where A" is the norm of the
ng) polynomial, which is given by /;f,’”) = A;’_ﬂzALm) with

I
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As mentioned at the outset, the defining feature of the new
bases is that their elements maintain the same rough width,
independently of mode order. This feature is shown in
Fig. 3 where we plot the radial dependence and rms width
for the GN functions, as well as for the LG modes for contrast.
(The MGL are not shown as they are very similar to the GN
functions.)

Like the MGL basis, the elements of this basis have a simple
Fourier transform and can be propagated paraxially in closed
form, but they offer the advantages of an orthonormal basis.
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Fig. 3. Radial dependence of the (a) GN and (b) LG bases, and
their respective rms width (c) and (d) for different 72 and 7.
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We do not present plots for their propagation as they look very
similar to those in Fig. 2. The only slight disadvantage of this
basis is the need to construct the new set of polynomials D" .

We now compare the performance of the MGL and GN
bases when approximating different fields with a finite number
of elements. We also include the corresponding results for the
standard LG basis. As the new bases coincide for m = 0, we
only consider nonrotationally symmetric fields.

We start by considering simple vortices delimited by a
circular aperture given by

U,(r, §) = (r/a)l" ™ circ(r/a). (15)

We use this example given its simplicity. However, because
of the discontinuity at » = « the convergence for all bases is
slow, with the error being roughly inversely proportional to
the truncation order. In Figs. 4(a)—4(c) we show the results
for m = 1. We see that the minimum error is localized within
a small region for the MGL and GN bases, whereas for the LG
basis it shifts toward higher values of the scaling parameter # as
the order increases (note the difference in ranges). Figure 5(a)
clarifies this behavior by considering larger truncation orders
and showing only the minimum error and the corresponding
value of 4. It is clear that the value of # that achieves the mini-
mum error is roughly constant for the MGL and GN bases
(and the values are very similar for both bases), with only slight
shifts due to the small oscillations of the error curves [visible in
Figs. 4(a)—4(c)]. For the LG basis, on the other hand, the op-
timal a shifts toward higher values.

Notice that, for this first example, the truncation errors are
slightly smaller for the LG basis than for the new bases.
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Fig. 4. (First column): Rms error for the expansion of a simple vor-
tex of charge 7 = 1 delimited by a circular aperture, as a function of
its width when using (a) the MGL basis, (b) the GN basis, and (c) the
LG basis; the number of terms used in the approximation ranges from
1 (lighter curves) to 8 (darker curves). (Second column): Rms error for
the Gaussian field with ¢-dependent width as defined in Eq. (16) with
6 = 0.2, as a function of the width parameter # for (d) the MLG,
(e) the GN basis, and (f) the LG for truncation orders /,, =0
(lighter curves) to /., = 6 (darker curves), where [ = |m| + n.
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Fig. 5. (a) Minimum truncation error as a function of scaling
parameter « for the MGL, GN, and LG bases for orders raging from
1 (lighter points) to 18 (darker points). (b) Truncation error as a
function of elements in the approximation given a scaling parameter
optimized for IV elements.

However, the advantage of having a well-localized optimal scal-
ing can be appreciated when looking at the truncation error for
fixed . That is, suppose that a value of # is used that is optimal
for some truncation order /V, but then less or more terms are
used. This is shown in Fig. 5(b) for the GN and LG bases,
where the points labeled N =1 and NV = 18 show the rms
error varying with truncation order, having chosen a scaling
parameter that minimizes the error for either 1 and 18 terms,
respectively. For the GN basis, the optimal # in both cases is
essentially the same, and so are the curves for the decay in error
with truncation order. For the LG basis, on the other hand, if
we choose 4 to be optimal for a small truncation order, then the
error reduces slowly when more terms are added, or if we use a
scaling that optimizes convergence when using many elements
(like V = 18), the first few terms of the expansion on their
own do a poor job at matching the desired function.

It is also worth mentioning that, while the nonorthogonal
MGL basis does not guarantee a decrease in the error
when adding terms for specific values of z [as can be seen
in Fig. 4(a) by the crossings in the curves], overall the error
diminishes with the number of terms and attains minimum
values comparable to those of its orthogonal counterparts
[see Fig. 5(a) where the data points for the MGL and GN bases
overlap almost perfectly]. For higher-order vortices (|| > 2),
the truncation error behaves in a similar way as for m = 1,
the only noticeable difference being that for increasing 7 the
nonorthogonality of the MLG basis becomes more apparent.
When plotting the truncation error as a function of « the
crossings are enhanced by an increase in the amplitude of
the oscillation and the minimum value attained starts differing
more from that of its orthogonal counterpart.

As a second example, consider a Gaussian field with a
¢-dependent waist:

2

r
U(r, ¢) = exp _242(1 + 6 cos 2¢)* |

Due to its symmetry, only even m terms are needed. The
smoothness of this function means that the errors attained
by all bases are significantly smaller. The results are shown
in Figs. 4(d)—4(f), where we can again appreciate the rough
invariance of the position of the optimal scaling with truncation
order. Here, we considered a total truncation order /,,,, for the
index / = n + |m|, which is increased by unity for each curve.

(16)
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That is, for given /., the number of elements used is
(/max + 1)%. Note that, unlike in the previous example, for this
case the GN basis attains a smaller truncation error than the
LG basis.

We presented alternatives to the well-established LG basis
consisting of polynomials of Gaussians with well-defined vor-
ticity. This approach allows basis elements with the usual type
of structure but with different, interesting properties: the sim-
ple form of the constituents (Gaussians and vortex Gaussians)
makes it easy to propagate the elements, and all these elements
have the same effective size for all orders. This second property
leads to a roughly order-independent scaling width for
minimizing truncation error, allowing the reduction of the
search-space for the optimal fit, and not requiring a new opti-
mization if different truncation orders are used for different
purposes. The nonorthogonal MGL basis provides accurate fits
while allowing the use of standard polynomials that are inbuilt
in common programming environments. Let us finish by dis-
cussing future generalizations of the work proposed here. First,
analogous bases for one dimension could be obtained, where
instead of elements with different vorticity, one considers even
and odd functions. The resulting bases would constitute an al-
ternative to the HG modes, and like these modes they can be
used to write two-dimensional basis functions that are separable
over the initial plane and follow simple propagation rules. A
second generalization that turns out to be fairly straightforward
is that into the nonparaxial regime, both for scalar and electro-
magnetic fields [15]. We expect that this generalization will
be particularly convenient for the study of the scattering of
focused fields off spherical particles. Such extensions will be
discussed in future work.
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