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Complete bases that are useful for beam propagation problems and present the distinct property of being spatially
confined at the initial plane are proposed. These bases are constructed in terms of polynomials of Gaussians, in
contrast with standard alternatives, such as the Hermite-Gaussian basis, that are given by a Gaussian times a poly-
nomial. The property of spatial confinement implies that, for all basis elements, the spatial extent at the initial plane
is roughly the same. This property leads to an optimal scaling parameter that is independent of truncation order for
the fitting of a confined initial field. Given their form as combinations of Gaussians, the paraxial propagation of

these basis elements can be modeled analytically.
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1. INTRODUCTION

It is often convenient to express a given beam in terms of a small
number of simple closed-form solutions to the paraxial wave
equation in order to model its propagation. This task is facili-
tated when the solutions in question constitute a complete or-
thonormal basis, as is the case of the Hermite—Gauss (HG),
Laguerre—Gauss (LG) and Ince-Gauss (IG) beams, used fre-
quently in studies of particle trapping, laser mode structure,
and data transmission using orbital angular momentum [1-5].
At their waist plane, these simple beams are expressible as the
product of a Gaussian localization factor and polynomials of the
spatial coordinates.

In recent work [6], we proposed a new type of basis, sepa-
rable in polar coordinates, whose elements are constructed as
polynomials of Gaussians instead of the standard Gaussians
times polynomials. These new solutions to the paraxial wave
equation present an unusual property: all their elements have
roughly the same width. That is, qualitatively, they resemble
the modes of a string more than the modes of a harmonic os-
cillator. This property allows for the scaling parameter (inherent
in all bases when fitting a given field or function) to be roughly
independent of the truncation order in the fitting. Two variants
of this type of basis were given [6]: one that is orthogonal with
uniform weight but that requires the definition of new poly-
nomials, and one whose orthogonality relation requires a
non-uniform weight function but that can be expressed in
terms of standard (Jacobi) polynomials. Note that other bases
have been proposed that are not orthogonal with constant
weight, such as the elegant modifications of the HG, LG,
and IG bases [1,7,8].
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In the present work, we derive new bases that are analogues of
the polynomials of Gaussians in [6] but that are instead separable
in Cartesian coordinates. We find that, again, we can choose
between orthogonality with uniform weight at the cost of having
to generate new polynomials, or orthogonality assisted by a
weight function employing standard Jacobi polynomials. The
use of these bases is illustrated with some simple examples.

2. ORTHOGONAL BASIS

Let us start by constructing an orthogonal basis. Like the HG
basis, this new basis should be separable in Cartesian coordi-
nates, so it is sufficient to consider the one-dimensional case.
It is convenient to divide this one-dimensional functional space
into even and odd functions. This division is analogous to the
one used in polar coordinates in which different vortex orders
are considered separately. For the even functions, we propose a
polynomial of Gaussians,

G (x) = g S G =) (1)
where ¢(© is a normalization constant and G (v) is an nth
order polynomial of its argument. For notational simplicity,
we set the width scaling parameter equal to unity (z = 1).
The orthogonality condition for these functions is given by
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Making the change of variable » = exp(-x?) leads to the

condition
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with w© (v) = (-ln »)"'/2. Given this orthogonality relation,
we can construct the polynomials Gy through a standard
method in terms of determinants involving the moments
1 [2,9]:
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The normalization factor can also be expressed in terms of
the moments [2,9] and is given by g = [Aii)l APTY? with
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Similarly, for the odd part, we propose a polynomial of
Gaussians times a factor of x to impose the desired parity:

09 (x) = gOxe TGV ) (7)

Again, by demanding orthonormality we obtain the
corresponding orthogonality relation for the 7th order polyno-
mials G,
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with % (») = (In »)'/2. The moments are again given by a
simple closed-form expression,
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and the polynomials and their normalization can be computed
by formulas analogous to those given in Egs. (4) and (6).
Having derived the even and odd elements of the basis, we

define

when 7 is even,

Gy ()

= 10
G { gg:{]) /2(x)  whenzisodd. (10

We refer to this basis as the Cartesian—Gaussian (CG) basis.
Note that completeness is guaranteed by the separation into
even and odd subsets of functions and by the biunivocal map-
ping of the semi-infinite interval x € [0, c0) (sufficient for each
of the two subsets) to the unit interval » € [0, 1) in which the
polynomials Gy (v) and G\ (v) form complete bases with the
corresponding weight.
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Several elements of this basis are shown in Fig. 1 along with
the corresponding elements of the HG basis for comparison.
We readily notice that, as opposed to the HG elements for
which the spatial extent grows with increasing order, the
CG eclements are all restricted to the same region. This fact
is further supported by Fig. 1(d), which shows the rms width
of the elements of both bases as a function of order: the width
of the HG elements clearly increases as the square root of the
order, while that for CG elements stays approximately constant.
The CG basis then stands as a Cartesian analogue to the
confined basis in [6] for polar coordinates.

The usefulness of a basis like this one for wave propagation
problems relies not only on a simple structure of its elements at
the initial plane but also on the fact that these elements are
given by closed-form expressions following propagation. We
are considering solutions to the paraxial wave equation, so
the propagation is given by Fresnel’s propagation integral
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Given that both the basis and the Fresnel propagation in-
tegral are separable in Cartesian coordinates, it is sufficient to
calculate these integrals for the one-dimensional case. Each
element is constructed uniquely of Gaussians or Gaussians
times a linear factor, so their Fresnel propagation can be easily
derived from the following relations:
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Figure 2 shows the propagation for the field U(x, y;0) =
G,(x)G5(y). Note that, for simplicity, the same scaling param-
eter 2 was used in both directions, but this is not necessary.
While the elements are not strictly self-similar in intensity
under propagation (unlike the HG beams), the general inten-
sity structure is approximately preserved.
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Fig. 1. Spatial dependence of the (a) CG, (b) GJ, and (c) HG basis
elements for different 7. (d) The rms width of the CG, GJ, and HG

basis elements as a function of order 7.
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Fig. 2. Amplitude of the CG basis element # = 2 and m = 3 along
the x—y (first and second row) plane for several propagation distances
and the y—z (third row) plane for x = 0.

3. GAUSS-JACOBI BASIS

While the basis derived in the previous section is orthonormal
and presents the desired properties, it is convenient for com-
putational purposes to derive an alternative that employs stan-
dard polynomials that satisfy simple recursion relations, even at
the cost of requiring a weight function in configuration space
for orthonormality. Like the bases derived in [6] and their non-
paraxial extension in [10], these polynomials are of the Jacobi
family, as we now show.

Jacobi polynomials satisfy the following orthogonality

relation:

1
/ (1- (1 + 0 PP () PSP (wydu = s, (13)
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where @ and  are two constants whose values can be chosen for
convenience, and
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By making the change of variable # = 2 exp(-x?) - 1, we
arrive at the expression
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This expression can be interpreted as an inner product of
functions with uniform weight given by
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However, independent of the values of @ and f, these ele-
ments do not have a simple closed-form expression following
paraxial propagation due to the factor of \/x. We therefore do
not regard them as useful basis elements (as was the case with
the Gauss—Legendre basis elements presented in [6]).

To obtain elements that are either linear combinations of
Gaussians (the even subset) or of Gaussians times x (the
odd subset), we group parts of the integrand in Eq. (15) as
the basis functions with the desired form, and the remaining
part plays the role of a weight factor. Let us consider the even
subset first. The only part of the integrand in Eq. (15) that is
not a linear combination of Gaussians is x(1 - ¢ )* (and even
the second factor could be assigned to the basis functions if
were a positive multiple of 2). We can then choose a to make
this weight factor as uniform as possible. It is easy to see that
a = -1/2 is the only value that makes this weight function
finite and non-zero as x — 0. An analogous treatment can
be applied for the odd subset, where, since each basis function
must contain a factor of x, the remaining factors in the inte-
grand are instead (1 - ¢ )%/x. The appropriate choice of @
that keeps the weight factor different from zero and finite is
then a@ = 1/2. The weight functions, for all x, are then

WO(x) = ——2 (17a)

WO (x) = ———. (17b)

The basis functions then follow directly from Eq. (15).
However, there is still complete freedom in the choice of f.
It is easy to show that the simplest choice, f = 0, gives the
basis elements widths that are similar to those derived in the
previous section, while also simplifying the normalization co-
efficient. The resulting basis functions then are given by

1 2 — 2
M =\ [2n 42 PPV e 1), (18a)
MO = J2n+ gxe—xz/zpif/ 202+ _1). (18b)

We can compose the complete Gauss—Jacobi (GJ) basis by
joining the even and odd sub-bases:

M, ()
M) @) when nis odd.

when 7is even,

M, (x) = { (19)

These functions are defined to be orthonormal over the in-
terval x € [-00, 00] where the weight function W must be
used if both functions are even, W is used if both functions
are odd, and either of the two (or unity) can be used if one is
even and one is odd.
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Figure 1(b) shows the spatial dependence of several of these
elements. We can appreciate the functional similarity with the
CG basis elements: both are confined to the same region and
have the same nodal structure. However, upon closer inspec-
tion, we notice that the even elements of the GJ basis are
smaller at the edges than the corresponding elements of the
CG basis, and the opposite is true for the odd elements.
This is due to the different weight functions for the even
and odd GJ sub-bases in Eqs. (17), which either grow as |x|
or decay as 1/|x| for |x| > 1. This causes the rms widths of
the even/odd terms to be slightly larger/smaller than those
of the CG elements, as shown in Fig. 1(d). Note that the
rms widths in this figure were calculated using a uniform
weight. If the corresponding weight functions for each sub-
basis are used for the calculation of the rms widths, all widths
are approximately equal.

4. EXAMPLES

Any function U(x) can be approximated in terms of a basis,
say f,, as

7, ‘max

Tx) = c.f,(), (20)

n=0

where the coefficients are given by

() = / " U0 f, () W (x)d (21)

with the appropriate weight W (x). The accuracy of a truncated
expansion can be quantified by the rms error, defined as

o _ 321U - U@
B TV

which for orthonormal bases with unit weight takes the sim-

plified form

(22)
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(AR 2
We compare the performance under truncation of the CG
and GJ bases with the standard HG basis by considering three
different examples. The first example is a simple rectangle func-
tion, equal to unity for |x| < 1/2 and to zero otherwise:

U(x) = rect(x). (24)

Note that this is an even function, so only the even elements

come into play. The results are shown in Figs. 3(a)-3(c). Next,
we consider an odd function given by

U(x) = xrect(x), (25)

for which the results are given in Figs. 3(d)-3(f). Finally, we

consider an example that requires similar amounts of even

and odd terms, given by

e =1

rms

x/4+1/8 when -1/2 <x < -1/4
Ul) = 23x/40 4+ 33/160 when-1/4 <x < 1/4

-7x/5+7/10 whenl/4 <x<1/2

0 otherwise

(26)

and the results are shown in Figs. 3(g)—3(i). In all cases, we scale
the basis (x — ax) to best fit the function, which is equivalent
to fitting the scaled function U(x/a) instead, where  is the
scaling parameter.
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Fig. 3. rms error for the truncated expansion of the functions in Eq. (24) (first row), Eq. (25) (second row), and Eq. (26) (third row), in terms of
the scaling parameter 2, when using the CG basis (first column), the GJ basis (second column), and the HG basis (third column). The number of
terms used in the approximations ranges from 1 to 9 for the first two rows and from 1 to 17 for the third row, with darker curves indicating higher

truncation orders.
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Fig. 4. Plots of the functions in Eq. (24) (first row), Eq. (25) (second row), and Eq. (26) (third row), and their truncated expansions using the CG
basis (first column), the GJ basis (second column), and the HG basis (third column). In all parts, the original functions are shown as dashed black
curves, while the truncated expansions are shown in shades of blue, with darker curves indicating higher truncation orders. The number of terms
used in the approximations ranges from 1 to 9 (in steps of 2) for the first two rows, and 1 to 13 (in steps of 3) for the third row. The value of the
scaling parameter a for each part is identified by the vertical dashed lines in Fig. 3 for each case.

For all the examples we notice a similar behavior: for the CG
and GJ bases, the minimum error is well localized, while for the
HG basis, the minimum error shifts toward larger values of « as
the number of elements in the fit increases (notice the
difference in range). Remarkably, despite their different orthog-
onality relations, the two new bases provide almost indistin-
guishable results. Notice that, because of the discontinuities,
the errors for all bases decay very slowly (roughly proportionally
to the inverse of the truncation order) for the first two exam-
ples. For the third example, the function is continuous even
though its derivative is discontinuous, so the error decays
faster (roughly proportionally to the square of the inverse of
the truncation order).

Figure 4 shows the functions given by Egs. (24)—(26) along
with approximations obtained with each of the bases and vary-
ing the number of elements used. The parameter 2 was chosen
to give the minimum rms error when only one element is used
for each given basis; this value is identified by the vertical
dashed lines in Fig. 3. The main property of the new bases be-
comes evident: since the scaling parameter is approximately in-
dependent of truncation order, we can choose the optimal value
for the lowest order and subsequently add more terms to the
approximation while staying close to the minimum possible
rms error. This is clearly not true for the HG basis for which
we get further away from the optimal scaling parameter as we
add more terms.

Note that so far, we have chosen to use the new bases here
to fit fields in configuration space at the initial plane. However,
for some applications, the angular spectrum (i.e., the spatial

Fourier transform) of the initial field is more confined than
the field itself. In such cases, one can use the bases proposed
here to fit the angular spectrum, since the propagation through
free space or any linear (ABCD) system of all the basis elements
can still be computed analytically.

5. FINAL REMARKS

We presented new bases that are separable in Cartesian coor-
dinates and whose elements are polynomials of Gaussians or
polynomials of Gaussians times the variable. These bases are
analogous to those in [6] that are separable in polar coordinates.
It is likely that similar bases can be proposed that are separable
in elliptical coordinates, similar to the Ince—Gauss beams [5],
but finding such bases is beyond the scope of this work.

As in the polar case, two types of basis are considered, both
obeying simple rules of paraxial propagation. The first is
orthogonal with unit weight but requires the construction of
new polynomials through the calculation of determinants, while
the second is expressible in terms of standard Jacobi polynomials,
but its orthogonality relation involves a non-uniform yet simple
weight function. Both bases present the property of spatial
confinement, namely, all their elements have approximately
the same spatial extent at the initial plane. This property implies
that the optimal scaling parameter for fitting a prescribed local-
ized function is roughly independent of truncation order.
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