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Solutions to the Maxwell–Bloch equations for a Λ system are computed using the single-soliton Darboux trans-
formation and the nonlinear superposition principle. These allow complete control of information deposited by a
signal pulse (with the help of an auxiliary control pulse) in the coherence of the medium’s ground states by
injecting subsequential pulses. Additionally, we study the encoding of two signal pulses and their manipulation
by a control pulse and show that multipulse storage and control are possible as long as the imprints made by
encoding the signal pulses are sufficiently separated. © 2015 Optical Society of America
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1. INTRODUCTION

The observation of a solitary canal wave by Scott Russell in 1834
is considered the historical origin of soliton studies, but the
enormous growth of the field began more than a century later.
This is due to the discovery of new methods for solving the non-
linear equations that describe them, such as inverse scattering
[1–3], the Bäcklund transformation [4,5], and the Darboux
transformation [6,7], to name a few. This phenomenon has been
increasingly studied in several fields of physics, and particularly
in optics [8]. McCall and Hahn were the first to observe these
solitary optical waves, as reported in their famous papers [9,10]
where they introduced the concept of self-induced transparency
(SIT). Due to the coherent interaction of the pulses with the
medium, they can propagate without attenuation. This is the
shape-preserving property of solitons that is sometimes used
to define them. McCall and Hahn also found that the optical
pulses tailor their intensity profile so that the total pulse area,
defined in terms of the Rabi frequency [see Eqs. (4)] as

θ�x� �
Z

∞

−∞
Ω�x; t�dt; (1)

tends toward the closest even multiple of π. This is the very well-
known area theorem, which is a consequence of the smoothing
effects of Doppler broadening [11].

Quantum optical systems have always been envisioned as
the ideal candidates for building reliable quantum memories.
This is due to their small decoherence and short interaction
times [12]. Many procedures have achieved light manipulation

[13] and storage. Light can be slowed down to the point where
its information is encoded in the medium [14,15] and then
retrieved, as was shown in [16]. Some other techniques such as
a combination of electromagnetic-induced transparency (EIT)
and four-wave mixing [17,18] have been shown to work. The
downside of these sorts of procedures is that they rely on a slow
resonant light–atom interaction that is characteristic of EIT
[19,20]. If this interaction is instead led by short pulses, we can
open the door to high-speed control and manipulation of light.

The regime of broadband pulses interacting with matter
leads to new possibilities for light control. The interaction of
strong electromagnetic fields with atomic systems is described
by nonlinear evolution equations (which are hard to solve) and
the use of numerical computation is usually required. In some
special circumstances, they become integrable and thus solvable
by the methods previously mentioned. In the particular case of
a Λ system (see Fig. 1), the Maxwell–Bloch equations that de-
fine the evolution of the system become integrable when both
signal and control fields have equal atom-field coupling param-
eters and are in two-photon resonance, as has been shown by
Park and Shin [21] and Clader and Eberly [22]. This leads to
solitonic solutions even in nonideal media preparation such as
“mixonium” [23], a partially coherent medium. Other studies
have been carried out for the case of ultracold atoms, where one
can neglect the effects of Doppler broadening and homo-
geneous relaxation. Given these assumptions, Groves et al. de-
duced a second-order solution that led to an alternative scheme
for storage and manipulation of light [24]. Complementary
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numerical simulations [25] showed the relevance of this pro-
cedure even under the effects of the ever-present spontaneous
emission. Here we continue this work by presenting new sol-
utions that allow full control of the information stored in the
ground-state elements of the density matrix. We present the
generalization to multiple pulse storage, as well as a three-step
control by the corresponding computation of higher order
solutions.

2. THEORETICAL FRAMEWORK

We consider the interaction of strong short pulses with a Λ
system in two-photon resonance with each field tuned to
address a different atomic transition. The atomic dipole oper-
ator is taken to be d � d 13j1ih3j � d 23j2ih3j � d 31j3ih1j�
d 32j3ih2j, thus only linking levels 1 to 3 and 2 to 3. As is cus-
tomary, the fields are written in carrier-envelope form:

E�x;t��E13�x;t�ei�k13x−ω13t��E23�x;t�ei�k23x−ω23t��c:c.; (2)

where ω13 and ω23 are the field frequencies, k13 and k23 are the
vacuum wave numbers, and E13�x; t� and E23�x; t� are the
slowly varying field envelopes. We assume that the pulses
are short enough that we can neglect the effects of spontaneous
emission but long enough that the envelopes change slowly
over many cycles of the optical frequency, thus justifying the
slow-varying envelope approximation (SVEA). Following [24]
we refer to the 1–3 field as the signal pulse and the 2–3 field as
the control pulse. Abandoning the bare frequencies in favor of
the common detuning, the total Hamiltonian in the rotating
wave approximation (RWA, see [11,12]) takes the form

H � −
ℏ
2

 
0 0 Ω�

13

0 0 Ω�
23

Ω13 Ω23 −2Δ

!
; (3)

where we defined the Rabi frequencies,

Ω13�x; t� � 2d 31 · E13�x; t�∕ℏ (4a)

and

Ω23�x; t� � 2d 32 · E23�x; t�∕ℏ; (4b)

and the detuning Δ � �E3 − E1�∕ℏ − ω13 � �E3 − E2�∕ℏ −
ω23 (here Ei denotes the energy of level jii). The atomic system

evolves according to the von Neumann equation for the density
matrix,

iℏ
∂ρ
∂t

� �H; ρ�; (5)

and the fields follow Maxwell’s wave equation in the SVEA:�
∂
∂x

� 1

c
∂
∂t

�
Ω13 � iμ13ρ31; (6a)

and �
∂
∂x

� 1

c
∂
∂t

�
Ω23 � iμ23ρ32: (6b)

Here, we defined the atom-field coupling parameters μj3 �
Nωj3jd j3j2∕ℏε0c with j � 1; 2. This gives us a set of eight non-
linear partial differential equations that need to be solved simul-
taneously. As stated previously, we need to consider the special
case of two-photon resonance and equal atom-field coupling
parameters, μ13 � μ23 � μ. This way we can use the methods
described in the introduction. In the traveling-wave coordinates
T � t − x∕c and Z � x, Eqs. (5) and (6) take the form

iℏ
∂ρ
∂T

� �H; ρ�; (7a)

and

∂H
∂Z

� −
ℏμ
2
�W ; ρ�; (7b)

where the constant matrix

W � ij3ih3j �
 
0 0 0
0 0 0
0 0 i

!
(8)

has been introduced. By combining these two equations it is
easily shown that the Lax equation,

∂ZU − ∂T V � �U;V � � 0; (9)

is satisfied where the Lax operators are defined as U �
−�i∕ℏ�H − λW and V � �iμ∕2λ�ρ, and λ is a constant known
as the spectral parameter. This effectively shows that the
Maxwell–Bloch equations [Eqs. (7)] are integrable.

Throughout this framework, we have considered only the
longitudinal spatial dimension; this was justified by the
assumption of plane waves. In reality, the pulses will have a
nonuniform intensity profile that will inevitably lead to
deviation from the theoretical assumption by effects such as
pulse stripping, diffraction, and self-focusing [10]. To mitigate
this we can use pulses that have a coherent frequency profile,
have their bandwidth determined only by the finite extent of
their envelope, and are free of chirping. Additionally, an aper-
ture can be used to ensure a planar wavefront and homo-
geneous distribution of intensity. An example of this can be
seen in the beautiful experiments on SIT by Gibbs and
Slusher [26,27]. Another thing worth mentioning is that the
finite extent of the pulses imposes some restrictions on the
use of atomic beams to get rid of Doppler broadening, namely,
the transit-time broadening must be smaller than the band-
width of the pulses. This must be satisfied in order to ensure
that the atoms where the signal pulse was encoded are the same
that are interacting with the subsequent pulses.

Fig. 1. Three-level atom in the Λ configuration, with spontaneous
emission Γ3 from the excited state interacting with two fields in two-
photon resonance.
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3. SOLUTION METHOD

A. Darboux Transformation

The basic idea of the Darboux transformation is to start from a
system of partial differential equations of the form

∂ψ
∂T

� Uψ and
∂ψ
∂Z

� V ψ ; (10)

then consider a transformation ψ̄ � Dψ so that

∂ψ̄
∂T

� Ū ψ̄ and
∂ψ̄
∂Z

� V̄ ψ̄ ; (11)

where

Ū � DUD−1 � �∂TD�D−1; (12a)

and

V̄ � DVD−1 � �∂ZD�D−1: (12b)

Now we want to construct the operator D in terms of
known parameters such as the original solution to the linear
Eq. (10). We also want it to preserve the spectral dependence
of the Lax pair, in which case we call it a Darboux matrix.
Additionally, we need to conserve the hermiticity of the density
matrix and Hamiltonian, which in turn requires that U �λ�† �
−U �λ�� and V �λ�† � −V �λ��. Such Lax operators belong to
what is known as the unitary reduction. Starting from the
“single-soliton” Darboux matrix, we have that

D � �λ − λ1�I − �λ1 − λ�1�P (13)

in order to satisfy all the required properties [7], where I is the
identity matrix and P is a Hermitian projection operator
(P2 � P and P � P†). Taking λ1 to be complex leads to more
complicated solutions and so we will consider it to be purely
imaginary, thus getting

D � λI � λ1�2P − I�: (14)

From the previous section we know that the Lax operators
for the Maxwell–Bloch equations [Eqs. (7)] have the following
spectral dependence:

U �λ� � λ0U 0 � λ1U 1; (15a)

V �λ� � λ−1V −1: (15b)

After inserting this into Eqs. (12) and collecting terms of
equal order in λ we find

λ0: Ū 0M � MU 0 � ∂TM; (16a)

λ1: Ū 0 � λ1Ū 1M � U 0 � λ1MU 1; (16b)

λ2: Ū 1 � U 1; (16c)

and

λ−1: V̄ −1M � MV −1; (17a)

λ0: V̄ −1 � V −1 � λ1∂ZM; (17b)

where we defined the unitary involution M � 2 P − I . It is
worth noting that from Eq. (16c) it is clear that the matrix

W will remain constant between solutions, as it should. By
writing the projection operator as P � jφihφj∕hφjφi, it is pos-
sible to use Eqs. (16) and (17) to determine a set of equations
for the column vector jφi. By means of the properties of the
projection operator, the result can be simplified to obtain a set
of two linear differential equations that determine jφi:

�I∂T − U �−λ1��jφi � 0; (18a)

�I∂Z − V �−λ1��jφi � 0: (18b)

This derivation is similar to the one presented by Clader and
Eberly in [22]. Solving Eqs. (18) determines the projection op-
erator and thus the Darboux matrix.

From the definition of the Lax operators for the Maxwell–
Bloch equations we can relate the new solution to the first-
order density matrix and Hamiltonian. If we assume that
our seed solution was given by the density matrix ρ0 and
the Hamiltonian H 0, it follows that

H � H 0 − iℏλ1�M;W �; (19a)

ρ � Mρ0M: (19b)

B. Nonlinear Superposition Rule

In principle, the method described in the previous section
could be used to compute higher order solutions, but the reality
is that Eqs. (18) become harder to solve with each step. Luckily,
there is a much simpler way to achieve this: the theorem of
permutability (Fig. 2). Starting from a seed solution (zeroth
order) U 0 and V 0, it is possible to construct two new solutions
Ua and V a with the associated parameter λa, and Ub and V b

with associated parameter λb by using the Darboux matrices Da

and Db that are of the form given by Eq. (14). From these first-
order solutions we can construct second-order solutions by ap-
plying Dab with parameter λb to the a solution and Dba with
parameter λa to the b solution, thus obtaining the new pairs of
Lax operators Uab V ab and V ba U ba. The theorem of permut-
ability asserts that there is nothing special about the order in
which the second-order solutions are computed. This is equiv-
alent to requiring commutativity of the Bianchi diagram, as
shown in Fig. 2. Both second-order solutions should then
be the same: Uab � Uba and V ab � V ba.

Using Eqs. (16) and (17) for the second-order Lax pair and
setting the result from the two paths equal to each other, we can
derive the following expression for the second-order involution
matrix:

Mab � �λaMa − λbMb��λaMaMb − λbI�−1: (20)

It is easy to relate this to the density matrix and Hamiltonian,
thus bypassing the need to compute the Darboux matrix and
solve complicated differential equations. Using the properties of
the involution matrices it is easy to show that

ρab � MabMaρ0MaMab; (21a)

and

Hab � H 0 − iℏ�λ2a − λ2b���λaMa − λbMb�; W �: (21b)

This treatment can be extended to obtain third-order solu-
tions by purely algebraic methods. Once more we assume the
commutativity of the Bianchi diagram up to the third order,
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which, again, is a statement of the independence of the path
taken from a total of six possibilities (see Fig. 2). After some
simplifications using the properties of the involution matrices
and the solution for the second order, the expression for the
third-order involution matrix can be written in similar form
as that for the second order, namely:

Mabc � �λbMab − λcMac��λbMabMac − λcI�−1: (22)

This is the same as using the nonlinear superposition rule
[Eq. (20)] on two second-order solutions. Finally, relating this
result to the density matrix and Hamiltonian we have

ρabc � MabcMabMaρ0MaMabMabc ; (23a)

and

Habc � Ha − iℏ�λ2b − λ2c ���λbMab − λcMac�;W �: (23b)

4. FIRST-ORDER SOLUTIONS

After reviewing the solution method, we now proceed to solve
the Maxwell–Bloch equations [Eqs. (7)]. For simplicity we will
consider the special case of zero detuning. The seed is taken to
be the trivial solution of a quiescent medium (ρ0 � j1ih1j) and
no fields (Ω13 � Ω23 � 0), so that H 0 � 0. It is easy to see
that by solving Eqs. (18),

jφai �
 a1e−μτaZ∕2

a2
a3e−T ∕τa

!
; (24)

where a1, a2, a3 are constants of integration. Here, we wrote
the Darboux parameter as λa � i∕τa, with τa ∈ R, which
makes it easier to associate it to a physical quantity, namely,
the duration of the pulses. Two possible solutions arising from
this have already been thoroughly studied by Groves et al. [24],
so we will just summarize the results that we will need. Table 1
contains all the elements of the involution Ma for the three
first-order solutions that are going to be considered.

The most general solution (Type 1) is given by taking all the
integration constants to be different from zero. In this case
we end up with a special case of the two-pulse soliton solution

previously found by Clader and Eberly in [22]. In the limit
t∕τa ≪ −1, we have a SIT-like signal pulse propagating, driving
population from the ground state j1i into the excited state j3i
and coherently driving it back, thus obtaining the characteristic
SIT 2π-pulse shaped as an hyperbolic secant. As the control
pulse is zero only in the limit of infinite negative time, some
of the excited population is coherently driven into the ground
state j2i, thus amplifying the seed of the control pulse. Its effect
slowly takes over, up to the point where the signal pulse starts to
be depleted as the control pulse is amplified [see Fig. 3(a)].

During this transfer the signal pulse encodes its information
into the ground-state elements ρ11, ρ22, and ρ12 of the density
matrix. Table 1 shows the elements of matrix Ma only at in-
finite positive and negative times, as these can be written in a
simple form and are the most relevant information. From these
and Eq. (19b), the shape of the ground-state elements of the
density matrix can be obtained and are given by

ρa11 � tanh2
�
−
μτa
2

Z � ηa12

�
; (25a)

ρa12�A12 sech

�
−
μτa
2
Z�ηa12

�
tanh

�
−
μτa
2
Z�ηa12

�
; (25b)

ρa22 � sech2
�
−
μτa
2

Z � ηa12

�
: (25c)

All other elements of ρa are zero. The location of the imprint
is where the population of state j2i has a maximum (this also
corresponds with the minimum of ρa11 and the zero of ρ

a
12 ) and

thus is given by

κaxa1 � ηa12; (26)

where κa � μτa∕2 is the absorption coefficient in the absence
of Doppler broadening. An example of this imprint is depicted
by the plots with solid lines in Fig. 4. The addition of Doppler
broadening would affect the definition of the absorption coef-
ficient and thus change the group velocity of the pulses in the
medium, but the encoding would still carry through. It is also
worth noting that, while the two pulses are active, the area of

Fig. 2. Bianchi diagram for the theorem of permutability. By requiring commutativity of the diagram we are able to find an algebraic method to
compute higher order solutions.
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the individual pulses is no longer equal to 2π but the total pulse
area as defined in [22],

θtot �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jθ13j2 � jθ23j2

q
; (27)

remains constant and equal to 2π. After the storage process is
over, t∕τa ≫ 1, we have a 2π-control pulse propagating away at
the speed of light as it is decoupled from the medium. Both
signal and control pulses have a duration of τa and are time
matched.

Another possibility is taking one of the integration constants
to be zero. If a1 � 0 then we obtain a Type 2 solution, which is
a 2π-control pulse traveling at the speed of light completely
decoupled from the medium. If instead we take a2 � 0, we
end up with an SIT solution for the signal pulse, which we
will refer to as Type 3. This pulse propagates at a reduced group
velocity, coherently driving population from state j1i to the
excited state j3i and back again, thus keeping its hyperbolic
secant shape as it propagates.

5. SINGLE-IMPRINT MANIPULATION

A. Backward-Transfer Solution

Now we make use of the nonlinear superposition rule [Eq. (20)]
to combine a Type 1 solution with a Type 3 solution, to which
we assign the letters a and b, respectively. The parameters ηjk
defined in Table 1 did not have any relevance other than to

control where the signal pulse deposited its information into
the medium for the Type 1 solutions. Now that we are super-
imposing two first-order solutions, it acquires renewed relevance
as it also controls the order of the pulses and whether the Type 1
pulse has enough time to make the imprint before the Type 3
pulse collides with it. The Rabi frequencies in the limit of infi-
nitely negative time are given by

Ωab
13 � −

2i
τa
A�
13 sech

�
T
τa

−
μτa
2

Z � ηa13 � δab
�

� 2i
τb
B�
13 sech

�
T
τb

−
μτb
2

Z � ηb13 − δ
ab

�
; (28a)

Ωab
23 � 0; (28b)

where we defined the phase lag parameter

δab � ln

���� τa � τb
τa − τb

����: (29)

Here, we will stick to the case where ηa13 ≫ ηb13 to guarantee
that the signal pulse from the Type 1 solution has enough time
to encode its information into the medium before the second
signal pulse collides with it.

From the Type 1 solution, we have that the first signal pulse
will imprint its information at a location determined by

Fig. 3. Third-order solution for a single imprint obtained from the nonlinear superposition of a first-order solution of each type: (a) shows the
initial encoding of the signal pulse at κax1 � 0, (b) shows the collision of a second signal pulse with the imprint, which displaces it to κax1 � −5, and
(c) shows the collision of the imprint with a control pulse, which moves it to κax1 � 5. The corresponding imprints are depicted in Fig. 4.

Table 1. Elements of the Involution Matrix Ma for the Three Types of First-Order Solutions Considereda

Type 1 �a1;a2;a3 ≠ 0� Type 2 �a1 � 0� Type 3 �a2 � 0�
T ∕τa ≪ −1 T ∕τa ≫ 1 For All Times For All Times

Ma
11 tanh

�
T
τa
− μτa

2
Z � ηa13� tanh�− μτa

2 Z � ηa12� −1 tanh�Tτa −
μτa
2
Z � ηa13�

Ma
22 −1 − tanh�− μτa

2 Z � ηa12� tanh�Tτa � ηa23� −1

Ma
33 − tanh�Tτa −

μτa
2 Z � ηa13� −1 − tanh�Tτa � ηa23� − tanh�Tτa −

μτa
2 Z � ηa13�

Ma
12 0 A12 sech�− μτa

2 Z � ηa12� 0 0
Ma

13 A13 sech�Tτa −
μτa
2 Z � ηa13� 0 0 A13 sech�Tτa −

μτa
2 Z � ηa13�

Ma
23 0 A23 sech�Tτa � ηa23� A23 sech�Tτa � ηa23� 0

aFor Type 1 we show only the elements in the limits of infinite negative and positive times, as these can be written in a simple form. We define the parameters
Ajk � aja�k∕jajakj and ηajk � ln jaj∕akj that control the phase and location of the pulses.
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Eq. (26). This proceeds as the already described Type 1 first-
order solution, and the corresponding pulse dynamics are
shown in Fig. 3(a). Then comes the second signal pulse of dif-
ferent duration τb. As it approaches the imprint, the second
signal pulse starts to decay as it gives way to a control pulse,
which mediates the transfer of the peak of the signal pulse from
the new location of the imprint to where it was first made.
Therefore, the imprint is effectively pushed backward. Finally,
the control pulse decays and the signal pulse continues to
propagate as an SIT-type solution. This process is shown in
Fig. 3(b). This effect is clearly due to the long tails of the
sech-shaped pulses that can sense changes in the medium long
before the peak of the pulses and thus interact with it accord-
ingly. This is similar to what happens with fast light, where the
long tails of the pulse sense the inverted medium, and so the
peak of the pulse is displaced at a speed greater than that of light
due to stimulated emission [28–31].

To determine what the effect was on the imprint, we need to
compute the ground-state elements of the density matrix in the
limit of infinitely positive long time using Eq. (21a). We find
that

ρab11 � tanh2
�
−
μτa
2

Z � ηa12 − δ
ab

�
; (30a)

ρab12 � −ϕA12 sech

�
−
μτa
2

Z � ηa12 − δ
ab

�

× tanh
�
−
μτa
2

Z � ηa12 − δ
ab

�
; (30b)

ρab22 � sech2
�
−
μτa
2

Z � ηa12 − δ
ab

�
; (30c)

where ϕ � sgn�τa − τb�, which determines the phase of the
coherence.

The effect is clear: the imprint is displaced to the left by an
amount determined by the phase lag parameter with a possible
phase shift in the coherence ρ12 depending on the relation be-

tween the duration of the pulses. The dashed line plots in Fig. 4
show the displaced imprint. This is the same result as the one
obtained when superimposing a Type 1 and a Type 2 first-
order solution except that the sign of the displacement is
inverted, and so the imprint is moved to the right. This has
already been shown in [24,25].

B. Multistep Manipulation

Having identified all the relevant parameters in the control of
a single imprint by studying the second-order solutions, we
can proceed to extend this control to multistep processes.
Here we consider only third-order solutions, which are com-
posed of three steps. The first will be the imprinting step, then
we can consider a combination of other control and/or signal
pulses to move the imprint back and forth.

For clarity let us consider the case of pushing the imprint to
the left and then to the right by means of Type 3 and Type 2
first-order solutions, respectively. We compute the third-order
solution by means of the superposition rule given by Eq. (22).
This situation is depicted in Fig. 3, where each frame corre-
sponds to a step and each will be labeled by their corresponding
letters a, b, and c. First, the information of the initial signal
pulse of duration τa is deposited in the form of an imprint that
is made into the medium as determined by Eq. (26). Then
comes a second signal pulse of duration τb. Its effect is the same
as described in the previous section. The imprint is moved to
the left and its new location is κaxa2 � κaxa1 − δ

ab. As has already
been mentioned, there is a phase shift in the coherence ρ12 if
τb < τa. Finally, for the third step, a control pulse of duration τc
comes in. Upon interaction with the imprint, it reads the in-
formation stored and retrieves the initial signal pulse, which, in
turn, is restored in a new location given by κaxa3 � κaxa2 � δac

with the same possibility for another π-phase shift for ρ12. The
results of creation and displacements of the imprint are shown
in Fig. 4. The solid lines show the first imprinted density matrix
elements, dashed lines represent the first displacement to the
left, and dashed–dotted lines show the imprint when it is dis-
placed to the right.

It should be clear that the generalization for single-imprint
manipulation to an nth-order solution follows from the pre-
vious results. We can readily write the final location of the
imprint,

κaxan � ηa12 −
Xm2

i�1

δabi �
Xm3

i�1

δaci ; (31)

where m2 and m3 are, respectively, the number of Type 2 and 3
first-order solutions that compose this nth-order solution.
Additionally, if there is an odd number of pulses with duration
shorter than τa (the original signal pulse), then there is a
π-phase shift for the imprint.

6. MULTIPLE-IMPRINT CONTROL

A. Two-Imprint Solution

The first step to generalize this control to multiple-imprint
dynamics is to study the second-order solution born out of the
superposition of two Type 1 solutions. This will simulate the
scenario of having two signal pulses, each with their own

Fig. 4. Information encoding and control in a Λ system: imprint as
it has been encoded in the ground-state density matrix elements after
the initial encoding (solid line), after the first backward displacement
(dashed lines), and after the second forward displacement (dashed–
dotted lines). The imprint was generated and displaced by the pulse
sequence depicted in Fig. 3, and the snapshots were taken at times
t∕τa � 0, 60, and 150, respectively.
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control pulse seed. As each pair of pulses has different time du-
ration, one of them will be traveling faster. The parameters have
to be carefully chosen so that the first signal pulse, which we
will label with the letter a, deposits its information into the
medium before the second, labeled with the letter b, catches
up. In the limit of infinite negative time, the Rabi frequencies
are given the same expressions as for the backward-transfer sol-
ution [Eqs. (28)]. Therefore, in order to have the correct order
for the pulses, the condition ηa13 ≫ ηb13 must be satisfied.

Here again, after the first pair of pulses of time duration τa
has deposited the information of the signal pulse, the density
matrix elements are given by Eqs. (25), and the location of the
first imprint xa1 is determined by Eq. (26). When the second
imprint is made, if we want to preserve the information of each
pulse separately, we need to have that jηa12 − ηb12j ≫ 1. By using
this and the expressions given in Table 1 in the infinite time
limit, we can work out expressions for the density matrix ele-
ments around each imprint. In the vicinity of the first imprint
(the one made by the pulses of duration τa) we have

ρab11 � tanh2
�
−
μτa
2

Z � ηa12 � σδab
�
; (32a)

ρab12 � −ϕA12 sech

�
−
μτa
2

Z � ηa12 � σδab
�

× tanh
�
−
μτa
2

Z � ηa12 � σδab
�
; (32b)

ρab22 � sech2
�
−
μτa
2

Z � ηa12 � σδab
�
; (32c)

where we defined σ � sgn�ηa12 − ηb12�. Around the second im-
print we have similar expressions, with the signs in front of σ
and ϕ reversed.

There are several things to comment about these expres-
sions, but the most obvious and somewhat shocking is that
the parameters ηa13 and ηb13 are nowhere to be found. This
means that the temporal order in which the imprints were made
is irrelevant; the only thing that matters is the spatial ordering as

it is shown by the dependence on ηa12 and ηb12. Therefore, the
two processes depicted in Fig. 5 lead to the same result. On one
hand, we have the situation assumed here, namely, that signal
pulse τa stores its information first and xa1 > xb1. When the sec-
ond signal pulse, τb, is coming in, it senses the presence of the
first imprint and thus “knows” that it must deposit its infor-
mation before the value predicted by Eq. (26). This again is
clearly a feature of the long tails of the sech-shaped pulses that
start interacting with the imprint long before the peak collides
with it. The information is then encoded in a process similar to
the one described by a Type 1 first-order solution. The control
pulse that comes out from the encoding process then pushes the
first imprint in a way similar to the prediction from a super-
position of Types 1 and 2 first-order solutions. This process is
shown in Fig. 5(a). Now, on the other hand, we have the sit-
uation where the signal pulse τb encodes its information into
the medium first. Then comes the second signal pulse τa.
When it comes close to the imprint, it acts as a backward-trans-
fer solution, thus displacing the imprint by the amount dis-
cussed in Section 5.A. Then, it continues its propagation,
but, due to the translation it suffered while displacing the first
imprint, it encodes its information into a displaced location.
This complicated pulse dynamic is displayed in Fig. 5(b).

Regardless of which situation took place, the location of the
two imprints is now given by

κaxa2 � ηa12 � σδab; (33a)

κbxb2 � ηb12 − σδ
ab: (33b)

An example of the resulting imprints after the two pulses
have stored their information is presented in Fig. 6. The vertical
dashed lines show the predicted location given by Eq. (26):
these would be the actual locations of each imprint if they were
done separately.

B. Simultaneous Imprint Control

Now that we have demonstrated that the encoding of two sig-
nal pulses is possible and have quantified the effect on each

Fig. 5. Encoding of a second signal pulse. (a) A signal pulse of duration τa was encoded at κaxa1 � ηa12, and then comes a second signal pulse of
duration τb meant to be stored at κxb1 � ηb12, with xa1 > xb1. (b) Here the reverse process is presented; the pulse τb is the first to be encoded and the
pulse τa is the second. The values for η12 are kept the same, as well as those of τ. Both cases lead to the same imprint, which is shown in Fig. 6.
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imprint due to the presence of the other, we need to address the
question of multi-imprint control. To do this we consider the
concrete example of pushing the imprints made by the
two-imprint solution discussed in Section 6.A via a control
pulse of duration τc . We compute this third-order solution by
means of the superposition rule [Eq. (22)]. The resulting pulse
dynamics for the displacement step are shown in Fig. 7. As the
control pulse comes in, it first encounters the imprint made by
the signal pulse τb. Consequent to the interaction, the signal
pulse is retrieved, which in turn causes it to propagate and start
encoding its information back into the medium. The storage
gives way to another control pulse, which immediately starts
interacting with the imprint left by the signal pulse τa.
This signal pulse is then retrieved, it propagates, and finally is
re-encoded into the medium at a displaced location, giving way
to a control pulse that propagates away at the speed of light.

Figure 8 shows the displaced imprint: the vertical dashed
lines represent the location of each imprint before collision with
the control pulse. There we can clearly see that each imprint
was displaced a different amount and that just one of them

suffered a π-phase shift. Each imprint is displaced according
to its own parameters; that is, the new location for the τa
imprint is

κaxa3 � κaxa2 � δac ; (34)

and for the τb imprint we have

κbxb3 � κbxb2 � δbc : (35)

As we considered the case τa > τc > τb for plotting Figs. 7
and 8, following the results previously stated, we get that only
the imprint with larger duration suffers the π-phase shift.
Therefore, we have shown that the manipulation of multiple
imprints follows the single-imprint rules as long as one respects
the spatial limits of each imprint. That means that the control
pulse should not push the first imprint it encounters beyond
the second one. This does not imply that it cannot be done, just
that the end result for the imprints is going to be different.
From everything that has been said so far, it is not hard to
say what would happen in this scenario. When the control
pulse collides with the first imprint, it retrieves the signal pulse
stored. This signal pulse then encounters the second imprint
and, thus, interacts with it as a backward-transfer solution, dis-
placing the imprint to the left. Finally, the signal pulse encodes
its information, thus effectively inverting the order of the
imprints.

If instead of moving the imprints with a control pulse, we
had chosen a Type 3 first-order solution, then everything
would have been reversed. The imprints would be moved to
the left according to the results derived in Section 5.A. Here
again, there is an option for inverting the order of the imprints.
If the duration of the Type 3 pulse is tailored so that the im-
print on the right is displaced more than the separation between
imprints plus their widths, then the order is reversed. Each im-
print would be moved in a different direction, as well: the im-
print on the right is displaced to the left by the signal pulse, and
the imprint on the left is pushed to the right by the control
pulse that mediates the backward transfer.

Fig. 6. Multipulse storage in a Λ-system: each imprint is made by
the storage of two signal pulses of duration τa and τb. The vertical solid
lines show the location of each imprint, and the dashed ones show
where they would have been encoded if they had been by themselves.

Fig. 7. Displacement step of the third-order solution computed
from the superposition of two Type 1 and a Type 2 first-order solu-
tions. The resulting imprints are depicted in Fig. 8.

Fig. 8. Imprints displaced by a control pulse of duration such that
τa > τc > τb. The vertical solid lines give the location of the imprints,
and the dashed ones show their previous location. These correspond to
the pulse dynamics presented in Fig. 7.
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7. CONCLUSIONS

Throughout this paper we have shown the usefulness of a sol-
ution method via the Darboux transformation and the nonlin-
ear superposition principle for generating sequences of pulses
useful for storage and manipulation of information. It can
be employed to compute higher order solutions that give rise
to complicated sequences of pulses by purely algebraic, albeit
tedious, calculations.

The new backward-transfer solution, along with the solu-
tion presented in [24], allows complete control of the informa-
tion encoded by a signal pulse in the ground-state coherence of
the atomic system. The imprint can be moved backward or
forward any number of times by means of control and signal
pulses. This is particularly important for unidirectional systems
in which the pulses can propagate through the atomic medium
in only one direction, be that by design or experimental neces-
sity. The generation of higher order solutions showed that the
control of the imprint can be extended to any number of steps
moving the imprint back and forth. In practice, this might not
be completely true: we will need to abandon the idealized con-
dition of infinitely long pulses and media and consider the
effect of decoherence due to spontaneous emission. But as
existing numerical experiments show [25], storage and manipu-
lation are still possible with a somewhat different dependence
on the different parameters than the analytical solution, and
they still present the same trend. Of course, the degrading ef-
fects of decoherence may limit the number of steps to keep a
certain degree of fidelity in the information stored. Note that
the finiteness of the medium provides a way to retrieve the sig-
nal pulse by frustrating its re-encoding by the end face when
displaced by a control pulse.

We also showed that multipulse storage is possible, and the
effects due to the presence of another imprint can be quantified.
This study could be continued to analyze the effect of encoding
more pulses and see if the locations of the imprints follow a pre-
dictable trend from which it would be possible to extrapolate the
behavior for any number of imprints. Additionally, we showed
that manipulation of the imprints by means of pulses of Types 2
and 3 is possible. In this case, there are additional considerations,
such as the spatial extent of each imprint. Overlapping the im-
prints must be avoided when displacing an imprint a long dis-
tance or inverting their order. But from the numerical data, there
is a maximum displacement that could very well hinder any
chance of inverting the imprint or overlapping them (as long
as enough room was left between them during the encoding
stage) for any realistic experimental scenario.

A final note must be made about the effects of Doppler
broadening on the encoding and retrieval of the signal pulse.
In Ref. [22], Clader and Eberly worked out the first-order sol-
ution presented here with the added effects of Doppler broad-
ening. From their work we can see that, in the case where the
Doppler distribution is centered around resonance, the imprint
made on all the atoms is located at the same place, but
(assuming a real coherence ρ12 on resonance) for the atoms off-
resonance, the real part of the ground-state coherence is attenu-
ated and acquires an imaginary part. This imaginary part has a
sign that depends on the sign of the detuning, so there will be
an equal number of atoms with negative and positive imaginary

parts. When taking the average over the Doppler distribution,
this contribution will cancel out. Therefore, when a control
pulse collides with the imprint, the only consequence is the
attenuation of the real part for some atoms, which will inevi-
tably hinder the retrieval of the signal pulse but never suppress
it completely.

Funding. National Science Foundation (NSF) (PHY-
1203931, PHY-1505189).

Acknowledgment. R. G. C. acknowledges the support
of a CONACYT fellowship.

REFERENCES

1. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method
for solving the Korteweg-deVries equation,” Phys. Rev. Lett. 19,
1095–1097 (1967).

2. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear-
evolution equations of physical significance,” Phys. Rev. Lett. 31,
125–127 (1973).

3. G. L. Lamb, Elements of Soliton Theory (Wiley, 1980).
4. G. L. Lamb, “Analytical descriptions of ultrashort optical pulse

propagation in a resonant medium,” Rev. Mod. Phys. 43, 99–124
(1971).

5. R. M. Miura, Bäcklund Transformations (Springer-Verlag, 1976).
6. C. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable

Systems (Springer, 2005).
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