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We study the conditions under which fluorescent beads can be used to emulate single fluorescent molecules in
the calibration of optical microscopes. Although beads are widely used due to their brightness and easy manipu-
lation, there can be notable differences between the point spread functions (PSFs) they produce and those for
single-molecule fluorophores, caused by their different emission patterns and sizes. We study theoretically these
differences for various scenarios, e.g., with or without polarization channel splitting, to determine the condi-
tions under which the use of beads as a model for single molecules is valid. We also propose methods to model the
blurring due to the size difference and compensate for it to produce PSFs that are more similar to those for single
molecules. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.474837

1. INTRODUCTION

Fluorescence microscopy is a widely used technique for bio-
imaging applications, due not only to its intrinsic optical
contrast and/or specificity [1] but also for its compatibility
with super-resolution techniques [2–4]. For example, single-
molecule localization microscopy (SMLM) can achieve a spatial
resolution of up to a few nanometers [4–7]. Additionally,
when combined with polarization measurements, fluorescence
microscopy can offer information about the sample’s struc-
tural properties, in particular, the average orientation and the
order/wobbling of the molecules, on both the ensemble and
the single-molecule regimes [8]. This information is key not
only for biological applications but also in a broader sense,
since not considering the fluorophore’s orientation can bias
localization measurements [9,10]. The simultaneous estimation
of the emitters’ 3D localization and 3D orientational behavior
is called single-molecule orientation localization microscopy
(SMOLM). Common SMOLM techniques include polariza-
tion channel splitting [11–13] and point spread function (PSF)
engineering [14–19].

Fluorescence from a single molecule can be modeled as dipo-
lar radiation [8,20], resulting in a pattern at the pupil plane (or
far field) that is not uniform in intensity or in polarization, and
it is strongly dependent on the dipole’s 3D orientation [21].
The resulting PSF at the detector plane can be predicted from

this distribution. However, microscopes are typically imperfect
optical systems that have optical aberrations and/or polarization
distortions that bias both localization and orientation estima-
tions. Furthermore, these distortions may change across the field
of view. Therefore, it is important to characterize the imaging
system properly, and one way to do so is by imaging fluorescent
beads, given their brightness (significantly larger than that of
single fluorophores) and easy manipulation [22–27].

There are two main differences, however, between the PSFs
for beads and those for actual single-molecule emitters. First,
while beads can be quite small (a few tens of nanometers), they
are still much larger than single molecules, and this spatial exten-
sion induces a blurring effect on the measured PSF. Second,
beads are composed of many fluorophores with different orien-
tations [22,23], making their emission pattern quite different
from that of a single dipole: the light emitted by a bead is in
principle unpolarized and therefore fills fairly uniformly the
pupil of the system, in contrast to single-molecule fluorophores
that have specific polarization and intensity distributions.

In this paper, we study the circumstances under which
fluorescent beads, with the help of polarizers or other optical
components at the pupil plane, can be used to produce PSFs
that mimic those for single fluorophores with different orienta-
tions. We start by discussing in Section 2 the emission of a fixed
dipole and in Section 3 that of an unpolarized point-like emitter.
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The effects of bead size are then studied in Section 4, through
both numeric and semi-analytic approaches. We consider two
simple models for the bead emission. In particular, the semi-
analytic approach offers a series of corrections that can be used
to counter bead size effects on the PSF in image post-processing.
Finally, the validity of the use of fluorescent beads supplemented
with polarizers to mimic single fluorophores is discussed in
Section 5, and some conclusions are drawn in Section 6. The
analysis presented here follows directly from several theoretical
advances due to Prof. Emil Wolf, such as the Richards–Wolf
method for modeling high numerical aperture systems [28]
and the theory for partial spatial coherence and polarization
[29], so we think this work is appropriate for this special issue
celebrating his one-hundredth birthday.

2. RADIATION FROM A FIXED DIPOLE

In this section, we describe the forward model based on the
Richards–Wolf formalism [16,28,30] used to calculate the PSF
of a single dipole at a distance −z0 from the coverslip and for
a system in which the location of the focal plane with respect
the coverslip is given by zf , as shown in Fig. 1. We assume that
the dipole’s orientation is fixed and aligned with the unit vector
µ̂

T
= (µx , µy , µz). We ignore for now transverse (x , y ) dis-

placements, since they correspond simply to a linear phase factor
at the pupil plane, and in turn to a transverse displacement at the
detector plane. Let us denote as Ep(u) the field at the system’s
pupil plane, where u is a dimensionless pupil position with
polar coordinates (u, ϕ), normalized so that the edge of the
pupil corresponds to umax =NA, the numerical aperture of the
objective. For an ideal aplanatic system, the field at the pupil
plane is given by

Ep(u; z0, zf )= e iknf zf γ (u,nf )e−ikn0z0γ (u,n0)K(u) · µ̂, (1)

where n0 is the refractive index of the medium embedding the
fluorophore, nf is that of the immersion liquid of the objec-
tive (assumed here to be the same as that of the coverslip), and
γ (u, n)=

√
1− (u/n)2 [28]. Here, K(u) is a 2× 3 matrix

that determines the amplitude/polarization distribution at
the pupil plane (where the field is paraxial and hence requires
only two components) generated by each of the three Cartesian
components of the dipole source, according to

K(u)=(
g 0(u)+ g 2(u) cos 2ϕ g 2(u) sin 2ϕ g 1(u) cos ϕ

g 2(u) sin 2ϕ g 0(u)− g 2(u) cos 2ϕ g 1(u) sin ϕ

)
,

(2)

where

g 0,2(u)= P (u; nf , n0)
[
tp(u)γ (u, n0)± ts (u)

]
, (3a)

g 1(u)= 2P (u; nf , n0)
u
n0

tp(u), (3b)

P (u; n f , n0)=
1

2

nf

n0

√
γ (u, nf )

γ (u, n0)
, (3c)

Fig. 1. Sketch of the optical system collecting light from the fluo-
rophore to the system’s pupil. The fluorophore (black dot), located at
an axial position z0, is embedded in a medium with refractive index n0.
This medium has a planar interface at z= 0 with a coverslip, whose
refractive index nf is assumed to match that of the immersion liquid of
the objective. The curved surface represents the collimation effect of
the aplanatic objective, whose focal plane is at zf . The radial coordinate
of a ray at the back focal plane (BFP), which coincides with the pupil
plane, is given by fobju/nf .

with tp(u) and ts (u) being the transmission coefficients for the
radial (transverse-magnetic) and azimuthal (transverse-electric)
components of the field, respectively.

Figure 2 shows the intensity distribution for a horizontal
dipole embedded either in water (a), (b) or in air (c), and at
different distances from the coverslip. Notice that we observe
supercritical angle fluorescence (SAF) if the NA of the system is
larger than the refractive index of the embedding medium. The
strength of SAF depends greatly on the distance between the
dipole and the coverslip, |z0|, being significant only for |z0|<λ.
Figure 3 shows the polarization distribution at the pupil for
three orthogonal dipole orientations in air. Polarization within
the pupil is everywhere linearly polarized except in the annular
region occupied by SAF (outside the red circle), in which tp

and ts become complex and introduce a relative phase between
the radial and azimuthal field components. For a longitudinal
dipole, however, polarization remains linear even in the SAF
region since only the radial component contributes. Note that
for transverse dipoles, polarization at the pupil is largely in the
dipole direction for low NA, but less so for higher NA.

The field from the pupil is focused on the detector, which in
the ideal case corresponds to a Fourier transform of the form

Edet(ρ̄; z0, zf )=
f

M2λ

∫
J(u) · Ep(u; z0, zf )

× exp

(
−iku ·

ρ̄

M

)
d2u, (4)

where M is the optical system’s magnification, f is the focal
length of the focusing system, and ρ̄ is the transverse position
variable at the detector. We employ barred variables to dis-
tinguish the detector coordinates from the object space of the
fluorophores. Here, J(u) represents a Jones matrix describing
any manipulation on the field performed after the pupil plane,
ranging from a simple uniform analyzer before the detector to a
more elaborate mask with varying amplitudes, phases, or bire-
fringence, like those used in many PSF engineering techniques
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Fig. 2. Intensity distribution at the pupil generated by a horizontal dipole embedded in (a), (b) water (n0 = 1.33), and (c) air (n0 = 1). For all, nf =

1.51. The dashed green circles denote (from smaller to larger) NA= 0.6, 0.9, 1.2, and 1.5, while the red circle indicates NA= n0, which is the radial
lower bound of the annular region corresponding to SAF. In (a) and (c), SAF is important since the dipole is close to the coverslip, |z0| = λ/10, while
in (b), SAF is negligible since the dipole is further away, |z0| = λ.
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Fig. 3. Polarization distribution at the pupil generated by (a) transverse horizontal, (b) transverse vertical, and (c) longitudinal dipole embedded
in air and with nf = 1.51. Polarization ellipses are plotted on top of the respective amplitude distributions, with cyan denoting left-handedness and
magenta right-handedness. The dashed green circles denote (from smaller to larger) NA= 0.6, 0.9, 1.2, and 1.5, while the red circle indicates NA=
n0, where SAF begins. Intensity distributions are normalized with their respective maxima.

[16,18,19,25–27]. In what follows, we use the shorthand F for
this Fourier transform including the corresponding physical
parameters. The final intensity at the detector is given by

Idet(ρ̄; z0, zf )=
[
F
{
J(u) · Ep(u; z0, zf )

}]†

×
[
F
{
J(u) · Ep(u; z0, zf )

}]
, (5)

where † denotes the conjugate transpose operation.
We now study the variation of the PSF with the axial position

z0 of the dipole. For this purpose, we expand in a Taylor series in
z0 the intensity at the detector plane. This expansion will let us
gain physical insight and compare different sources such as fixed
dipoles, unpolarized point-like emitters, and fluorescent beads.
It will also be the basis for a semi-analytic model for accounting
for bead size discussed in Section 4. Let this Taylor expansion be
centered around some value z0 = d :

Idet(ρ̄; z0, zf )=

∞∑
m=0

1

m!
(z0 − d)m

∂m Idet

∂zm
0
(ρ̄; d , zf )

=

∞∑
m=0

1

m!
(z0 − d)mIm(ρ̄; d , zf ), (6)

where in the last step we introduced the notation Im(ρ̄; d , zm)
for the mth derivative in z0 of the intensity. While written here
as a sum over all nonnegative integers, in practice, the sum in m
will be truncated at some modest value. Since the only depend-
ence in z0 of the field Edet is within the complex phase factor, we
have

∂mEdet

∂zm
0

(ρ̄; d , zf )=F
{
J(u) · Ep(u; d , zf )[−ikn0γ (u, n0)]

m},
(7)

so that the coefficients of the series become

Im(ρ̄; d , zf )=
m∑

l=0

m!
l !(m−l)!

∂l E†
det

∂zl
0
(ρ̄; d , zf )

∂m−l Edet

∂zm−l
0

(ρ̄; d , zf ).

(8)
Note that for m > 0, Im are not intensities but rather changes

in the intensity with z0, so they can be positive or negative,
although their individual integrals must vanish due to energy
conservation. To illustrate the usefulness of this expansion,
let us consider the simple case of index matching (a common
strategy in microscopy to avoid optical aberrations introduced
by the interface), i.e., n0 = nf , for which there is no SAF. The
first four columns of Fig. 4 show the distributions for Im at the
nominal focal distance (z0 = zf ) for different constant choices
for the Jones matrix J, namely, the identity (no manipulation
before focusing), and pairs of orthogonal polarization pro-
jections before the detector: horizontal/vertical and circular
left/right. The fifth column shows the PSFs at the defocused
plane zf − z0 = λ/3, calculated as a weighted superposition of
the first four columns following Eq. (6). Notice that the PSF is
slightly elongated in the dipole direction (horizontally). Given
the absence of SAF contributions and aberrations, the focal spot
is symmetric in z around the nominal image plane, so that the
odd m contributions vanish in Figs. 4(a)–4(c). Nevertheless, as
shown in Figs. 4(d) and 4(e), when a circular analyzer is used, I1

does not vanish, hence breaking the symmetry, and causing the
circularly polarized PSFs to counter-rotate with respect to each
other with defocus, as shown in the last column of Figs. 4(d)
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Fig. 4. First four columns are the PSFs I0 and subsequent Taylor components Im for a system with NA= 1.3 (no SAF) imaging a horizon-
tal dipole in water in an index-matching scenario (n0 = nf ≈ 1.33), for several polarization projections following the pupil: (a) no polarizer,
(b) horizontal, (c) vertical, (d) left-circular, and (e) right-circular polarizers. The last column shows the corresponding simulated defocused PSFs
at zf − z0 = λ/3. The elements of each column are normalized to the largest value in the column, but the results in (c) are scaled by a factor of 128,
and those in (d) and (e) are scaled by a factor of two. Here, λ= 525 nm, and squares are of length 1µm on the object side.

and 4(e). This could serve as the basis of a SMOLM technique
for the estimation of transverse dipoles’ localizations and ori-
entations, consisting of forming separately the PSF of each
circular component: for perfectly in-focus dipoles, the elonga-
tion reports on the dipole direction, while for defocused dipoles,
the amount of counter-rotation between PSFs reports on the
defocus. This behavior is reminiscent of that of the PSFs in a
technique proposed recently [16]. However, the signature of the
elongation and rotation of the PSFs in Figs. 4(d) and 4(e) may
not be sufficiently strong to remain detectable in the presence of
noise and camera pixelation.

This index-matching example shows some of the insights
gained by this Taylor expansion approach. In particular, it illus-
trates that to break the insensitivity to the sign of defocus of the
measured PSFs, it is not imperative to have optical aberrations
or use complicated Fourier manipulations (a common belief ),
but one can simply use the correct polarization projections.
Note that the distributions for Im when the refractive indices
are not matched (n0 6= nf ) can also be computed, even when
SAF contributions are present. These contributions would
disrupt the symmetry around the focal plane so that I1 would
not vanish. In fact, the choice of a focal plane would no longer
be unique, and some criterion (e.g., paraxial focus, minimum
spot size, minimum RMS wavefront error, etc.) would have to
be adopted for its choice. Nonetheless, the insight gained in the
index-matching case remains valid, and the PSFs resulting from

circular polarization projection would still counter-rotate with
defocus.

3. RADIATION FROM AN UNPOLARIZED
EMITTER

An unpolarized (in the 3D sense) point-like emitter can be
understood as the incoherent sum of contributions from three
orthogonal dipoles of equal magnitude. Without loss of gener-
ality, we can use three dipoles aligned with the coordinate axes
x (transverse horizontal), y (transverse vertical), and z (longitu-
dinal). Therefore, the intensity distribution at the pupil can be
written as

Ipupil,unp = |K · x̂ |2 + |K · ŷ|2 + |K · ẑ|2 =Tr{K†K}, (9)

where x̂ , ŷ, and ẑ are 3D unit vectors in these three directions,
and Tr{}denotes the trace. It can be shown that this intensity dis-
tribution reduces to the radially symmetric function

Ipupil,unp(u)= |P (u; nf , n0)|
2 F (u; z0)

{
S|tp(u)|2 + |ts (u)|2

}
,

(10)
where F (u, z0)= exp[−2Im{kn0|z0|γ (u, n0)}], and
S = |γ (u, n0)|

2
+ (u/n0)

2, with z0 the distance to the cov-
erslip and Im{} denoting the imaginary part. Note that outside
the SAF region, i.e., for u ≤ n0, P (u; nf , n0)= F (u, z0)= 1.
Figure 5 shows this intensity distribution and the one result-
ing from passing through a horizontal polarizer, as well as the
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Fig. 5. Intensity distributions at the pupil for (a) unpolarized emitter, (b) unpolarized emitter filtered by a horizontal polarizer at the pupil, and
(c) horizontal dipole, all embedded in air, with a distance to the coverslip of d = λ/10, and for a system with NA= 1.5. The dashed green circles
denote (from smaller to larger) NA= 0.6, 0.9, 1.2, and 1.5, while the red circle indicates NA= n0 where SAF begins.
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Fig. 6. Normalized Stokes parameters at pupils (a) s 1 and (b) s 2, and (c) DOPp, over the pupil for an unpolarized emitter embedded in air, with a
distance to the coverslip of d = λ/10, and for a system with NA= 1.5. The dashed green circles denote (from smaller to larger) NA= 0.6, 0.9, 1.2,
and 1.5, while the red circle indicates NA= n0 where SAF begins.

one for a horizontal dipole. Note that the latter two are similar
(i.e., fairly constant) for low NA, but their differences increase
considerably for higher NA. In particular, the distribution in
Fig. 5(b) is maximal at the two intersections of the horizontal
with the circle of radius n0, and these points correspond to the
minima in Fig. 5(c).

Let us now look at the polarization distribution at the pupil
plane for an unpolarized point emitter. The distribution of the
normalized Stokes parameters, i.e., s i (u)= Si (u)/S0(u) for
i = 1, 2, 3, where S0(u)= Ipupil,unp(u), is found to be given by

s 1(u)=
S|tp(u)|2 − |ts (u)|2

S|tp(u)|2 + |ts (u)|2
cos 2ϕ, (11a)

s 2(u)=
S|tp(u)|2 − |ts (u)|2

S|tp(u)|2 + |ts (u)|2
sin 2ϕ, (11b)

s 3(u)= 0, (11c)

which (unlike Ipupil,unp) depend onϕ although as a simple sinus-
oidal modulation. The degree of polarization is rotationally
symmetric:

DOP(u)=

√√√√ 3∑
i=1

s 2
i (u)=

∣∣S|tp(u)|2 − |ts (u)|2
∣∣

S|tp(u)|2 + |ts (u)|2
. (12)

That is, the field at the pupil plane is fully unpolarized
(DOP= 0) only at the center, and as one approaches the
border of the pupil, the difference between the Fresnel transmis-
sion coefficients introduces more polarization. This degree of
polarization can be particularly strong for the SAF contribution.

This is illustrated in Fig. 6, which shows the pupil distributions
of the normalized Stokes parameters as well as the degree of
polarization of an unpolarized emitter close to the coverslip.

Like the pupil distributions, the PSFs can be constructed as
the incoherent sum of the intensity contributions at the detec-
tor of the three orthogonal dipoles (horizontal, vertical, and
longitudinal). Note that, given the linearity of the intensity,
the Taylor expansion for total intensity is simply the sum of the
corresponding contributions Im(ρ̄; z0) for each of these three
orthogonal dipoles. Figure 7 shows the distribution of Im at the
nominal focal distance, z0 = zf , in an index-matching scenario,
n0 = nf , for different constant choices for J, namely, the iden-
tity (no manipulation before focusing), and pairs of orthogonal
polarization projections before the detector: horizontal/vertical
and left/right circular. For horizontal and vertical polarization
projections, the PSFs become elongated, whereas they retain
rotational symmetry when no polarization projection takes
place or for circular polarization projections. Note that, given
the symmetry of the focused field around the nominal image
plane in the absence of aberrations, the odd derivative terms
vanish in Fig. 7.

4. MODELING THE EFFECTS OF BEAD SIZE

As mentioned in the Introduction, we can envision several sim-
ple models for the emission and geometry of a fluorescent bead,
which include: (1) a transparent solid sphere, in which all points
inside the bead emit light, and this light is able to emerge from
the bead; (2) a transparent shell , in which only the points at the
surface of the sphere emit, but the light from all these points is
visible in any direction; (3) an opaque shell , where only the light
from points at the surface in the line of sight can be detected,
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Fig. 7. First four columns are the PSFs I0 and subsequent Taylor components Im for a system with NA= 1.3 imaging an unpolarized emitter in
water in an index-matching scenario (nf = n0 ≈ 1.33), for several polarization projections following the pupil: (a) no polarizer, (b) horizontal, (c) ver-
tical, (d) left-circular, and (e) right-circular polarizers. The last column shows the corresponding simulated defocused PSFs at zf − z0 = λ/3. The ele-
ments of each column are normalized to the largest value in the column, but a factor of two is applied in rows (b)–(e) with respect to (a). Here, λ=
525 nm, and squares are of length 1µm on the object side.

perhaps following a Lambertian emission model. Given their
transparency, fluorescent beads most likely are best described
by the first model, particularly when their index is well matched
to that of its surrounding medium. However, we also describe
the second model in what follows, given how similar its math-
ematical description is to that of the first. The third model will
not be discussed further, since it is harder to model and would be
relevant, for example, if the refractive index of the bead had an
important imaginary part.

To model an extended incoherent source, we could follow
several approaches. One would be to superpose incoherently
the contributions from randomly oriented dipoles whose posi-
tions within the desired volume are also chosen randomly. This
stochastic approach can be easily implemented for simulating
fluorophore distributions of arbitrary shapes. However, it is
computationally slow, and it does not offer much physical
insight. We therefore opt instead for a deterministic approach
that assumes the same emission at all points, hence allowing the
use of numerical or semi-analytic approximations.

A. Transparent Solid Sphere

Let us assume that the intensity distribution at the detector due
to a source at (x , y , z) is Idet(ρ̄; x , y , z) (where again coordi-
nates without a bar describe the space of the bead, and barred
coordinates correspond to the detector plane). Note that we
omit the dependence on zf for brevity. Consider a transparent

fluorescent bead of radius R centered at (x0, y0, z0). The
measured intensity can be calculated as a superposition of 2D
convolutions:

Itot(ρ̄; x0, y0, z0, R)

= σV

∫ R

−R
Idet(ρ̄; x0, y0, z0 + z) ∗ D(ρ̄; R, z)dz, (13)

where σV is the volumetric density of fluorophores, ∗ denotes a
2D convolution in the detector coordinates, and D(ρ̄; R, z) is a
disk function representing the magnified section of the bead at z,
where the transverse magnification is given by M, so

D(ρ̄; R, z)= circ

 1

R

√∣∣∣∣ ρ̄

M

∣∣∣∣2 + z2

= circ

(
|ρ̄/M|
√

R2 − z2

)
.

(14)
For numerical purposes, the integral in z can be approximated
through a discrete sum of N slices, i.e.,

Itot(ρ̄; x0, y0, z0, R)≈ σV

N∑
j=1

Idet(ρ̄; x0, y0, z0 + z j )

∗ D(ρ̄; R, z j )1z, (15)

where
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1z=
2R
N
, z j =

(
j −

1

2

)
1z− R . (16)

This approximate model can then be implemented as

Itot = σVF−1
u→ρ̄


N∑

j=1

Fρ̄→u
{

Idet(ρ̄; x0, y0, z0 + z j )
}

× Fρ̄→u
{

D(ρ̄; R, z j )
}1z, (17)

where

Fρ̄→u
{

D(ρ̄; R, z j )
}
(u)= 2πM2 R2

j
J1(ku R j )

ku R j
, (18)

with R j =

√
R2 − z2

j , i.e., the section of the bead at z j . Note

that the way the sum is implemented, using N = 1 (i.e., one slice
through the center of the bead), corresponds to a convolution
of the PSF with a disk of the same nominal radius as the bead,
giving a very simple model for the blurring effect.

Alternatively, a semi-analytic approach can be used based
on a Taylor expansion in z around z0 of Idet like that in Eq. (6),
namely,

Itot(ρ̄; x0, y0, z0, R)

= σV

∞∑
m=0

1

m!
Idet,m(ρ̄; x0, y0, z0) ∗ Gm(ρ̄; R), (19)

where, for sufficiently small beads, a good approximation can
be obtained by truncating the sum at a low value of m. The
function Gm(ρ̄; R) is defined as the easily solvable integral

Gm(ρ̄; R)=
∫ R

−R
zm D(ρ̄; R, z)dz=

∫ `/2

−`/2
zmdz

=

{ 1
2m (m+1)`

m+1, m even,
0, m odd,

(20)

where `(ρ̄; R) is the length in z of the bead at a given transverse
position. In terms of the detector coordinates, this length is
given by

`(ρ̄; R)= 2

√
R2 −

∣∣∣∣ ρ̄M
∣∣∣∣2. (21)

Note that Gm = 0 for odd m due to the symmetry of the bead, so
the sum in Eq. (19) includes only contributions for even m, even
when n0 6= nf . We therefore substitute m = 2µ forµ= 0, 1, ...
in what follows. By using the convolution property of Fourier
transforms, we can rewrite Eq. (19) as

Itot = σVF−1
u→ρ̄

{
∞∑
µ=0

1

(2µ)!
Fρ̄→u

{
Idet,2µ

}
Fρ̄→u{G2µ}

}
,

(22)
where we dropped the arguments for brevity. Since G2µ are
radially symmetric functions, the Hankel transform can be used

to obtain their Fourier transforms:

Fρ̄→u{G2µ}(u)= 4πM2µ+2 R2µ+3(2µ− 1)!!
jµ+1(ku R)

(ku R)µ+1 ,

(23)
where n!! = (n)(n − 2) . . . is the double factorial, and jn
denotes a spherical Bessel function of order n.

Figure 8(a) shows the PSF for the particular case of a bead
with diameter 2R = 200 nm embedded in water and index
matched, imaged by a system with NA= 1.3. The PSF was
obtained using the discrete sum of convolutions in Eq. (15)
with N = 21. On the other hand, Figs. 8(b) and 8(c) show the
difference between our ground truth, the PSF in Fig. 8(a), and
the PSFs obtained using (b) the same method but for N = 1,
namely, a simple convolution with a uniform disk, and (c), (d)
the semi-analytical approach in Eq. (22) with the sum truncated
at (c) µ= 0, namely, a simple convolution with the apodized
disk G0, and (d) µ= 1, that is, including an extra correction.
We take as ground truth the result shown in Fig. 8(a). We see
that, for large NAs, the two models including only one contribu-
tion, namely, the convolution with a uniform disk D(ρ̄) (b) and
with an apodized disk G0(ρ̄) (c), give results with similar levels
of error, whereas the semi-analytic result including a correction
term gives an error 20 times smaller. Note that the errors in
Figs. 8(b) and 8(c) have opposite behavior, due to the fact that
G0(ρ̄)weights more heavily the center compared to the borders,
while D(ρ̄) is uniform.

To compare the models more thoroughly, the RMS error
for a range of NAs and bead radii was computed using again
as ground truth the results of Eq. (15) with N = 15. Figure 9
shows the logarithm of the RMS error. Notice that for small
NA, the convolution with the apodized disk, G0(ρ̄), is much
better than the convolution with a uniform disk, D(ρ̄), but for
larger NA, they have similar performances, and the uniform disk
even outperforms the apodized one. An interesting difference
between these two simple models is that convolving with G0(ρ̄)

leads to an estimate whose error grows with both NA and R ,
while convolving with D(ρ̄) leads to an error that is roughly
independent of NA. The semi-analytical model becomes again
roughly independent of NA for small beads when the leading
correction is included.

A key result, particularly for small NA systems, is that the fac-
tor for the zeroth order, namely,

Fρ̄→u{G0}(u)= 4πM2 R3 j1(ku R)
(ku R)

, (24)

can be used to directly deconvolve the measured intensity at the
detector to obtain a more realistic PSF, i.e.,

I ′ =F−1
u→ρ̄

{
Fρ̄→u{Imeasured}

Fρ̄→u{G0}

}
. (25)

This deconvolution is reliable under appropriate signal-to-noise
ratio conditions, and requires that the zeros of Fρ̄→u{G0} lie
well outside the incoherent pupil radius of 2NA. The first zero of
Fρ̄→u{G0} is at u ′ ≈ 1.43π/(k R), giving the safety condition
for the bead’s diameter 2R < 0.715λ/NA. In a similar manner,
the uniform disk model obtained from considering a single slice
in Eq. (17) provides an alternative to perform the deconvolu-
tion. Here, the location of the first zero of Fρ̄→u{D} restricts
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Fig. 8. (a) Simulated PSFs for a 200 nm diameter fluorescent bead using numerical integration with 21 slices. Difference between the numerical
integration result and (b) one slice, i.e., uniform disk model, (c) semi-analytic model withµ= 0, and (d) semi-analytic model withµ= 1. Note that
(b) and (c) are normalized to 1% of the peak value of the PSF, whereas (d) is normalized to 0.05% of the maximum value recorded for (a). Here, NA=
1.3, and the index-matching condition (nf = n0 ≈ 1.33) and squares are of length 1µm on the object side.
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Fig. 9. RMS error, for varying NAs and bead radii, between the numerically integrated PSF and the PSFs obtained by using: (a) Eq. (15) with
N = 1(convolution with a flat disk), (b) Eq. (22) truncated atµ= 0 (convolution with an apodized disk), and (c) Eq. (22) truncated atµ= 1. Here,
NA= 1.3, and the embedding medium is water (n0 ≈ 1.33).

the parameters to satisfy the slightly more restrictive condition
2R < 0.61λ/NA.

B. Transparent Shell

Although we do not expect this model to be a faithful rep-
resentation of a fluorescent bead, we include it given its
simplicity, and in case it can be useful in a different applica-
tion. Following the same procedure as in the previous section, let
us now assume a fluorescent empty shell of radius R centered at
(x0, y0, z0). Again, the measured intensity can be calculated as a
superposition of 2D convolutions:

Itot(ρ̄; x0, y0, z0, R)

= σS

∫ R

−R
Idet(ρ̄; x0, y0, z0 + z) ∗ A(ρ̄; R, z)dz, (26)

where σS is the surface density of fluorophores, and A(ρ̄; R, z)
is an impulse ring function representing the magnified
perimeter of the sphere at z, i.e.,

A(ρ̄; R, z)= δ

(√
ρ̄2

M2
+ z2 − R

)
=
δ(z− `/2)+ δ(z+ `/2)

|z|/R
,

(27)
where ` is defined in Eq. (21). Numerically, this integral in z can
be computed through a discrete sum of N slices as

Itot = σSF−1
u→ρ̄{

N∑
j=1

Fρ̄→u

{
Idet(ρ̄; x0, y0, z0 + z j )

}
Fρ̄→u

{
A(ρ̄; R, z j )

}}
1z,

(28)

where1z and z j are defined as in Eq. (16), and

Fρ̄→u
{

A(ρ̄; R, z j )
}
(u)=Fρ̄→u

{
M R
ρ̄
δ

(
ρ̄

M
− R j

)}
(u)= 2πM2 R J0(ku R j ),

(29)

in which once more, R j =

√
R2 − z2

j , i.e., it is the radius of the

bead at z j .
On the other hand, as in the previous section, a semi-analytic

approach can be used based on a Taylor expansion in z around z0

of Idet, namely,

Itot(ρ̄; x0, y0, z0, R)

= σS

∞∑
m=0

1

m!
Idet,m(ρ̄; x0, y0, z0) ∗ Hm(ρ̄; R), (30)

where the function Hm(ρ̄; R) is defined as the easily solvable
integral

Hm(ρ̄; R)=
∫ R

−R
zm A(ρ̄; R, z)dz=

{
R `m−1

2m−2 , m even,

0, m odd.
(31)

Note that in general, Hm = (m − 1)RGm−2, where Gm is given
in Eq. (20), and so the total intensity can be expressed (by again
substituting m = 2µ) as
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Itot = RσSF−1
u→ρ̄{

∞∑
µ=0

(2µ− 1)

(2µ)!
Fρ̄→u

{
Idet,2µ

}
Fρ̄→u{G2(µ−1)}

}
, (32)

in whichFρ̄→u{G2µ} is given in Eq. (23).

5. MIMICKING TRANSVERSE DIPOLES WITH
BEADS

We now evaluate how well a fluorescent bead supplemented
with a polarizer at the pupil can be used to mimic the PSF of a
transverse point dipole. For of a transverse dipole, the intensity
distribution at the pupil is fairly uniform except near the pupil
edge and is similar to an unpolarized emitter. Therefore, by
inserting a linear polarizer at the pupil, one can make the PSF
of an unpolarized emitter mimic the one for a transverse dipole
[16,24]. For systems with small NAs, this should be a good
approximation, while for higher NAs, differences become more
evident at the edge of the pupil distribution, in both intensity
and polarization, causing discrepancies between the corre-
sponding PSFs. In this section, we first study how a point-like
emitter can mimic a real transversal dipole, and then we incor-
porate the effects of bead size using the results of the previous
section. Particularly we highlight how the function G0 can be
used to deconvolve the measured PSFs to correct the blurring
introduced by the bead size.

A. Mimicking Transverse Dipoles Using a
Point-Like Source

Let us, without loss of generality, consider a horizontal dipole
(aligned with the x axis). The Jones matrix at the pupil is then
written as

J(u)= J′(u)Px , (33)

where Px = ρ̂x ρ̂x
† is a horizontal projection matrix represent-

ing a horizontal polarizer, with ρ̂x being a 2D unit vector in the
horizontal direction. That is, the Jones matrix representing all
the manipulations after the pupil can be chosen to represent
the cascade of a horizontal linear polarizer and other possible
manipulations represented by the Jones matrix J′(u). Let us for
now set this second Jones matrix to the identity. It can be shown
that the intensity distribution at the pupil just after the polarizer
becomes

Ip,mimic(u)=
(
|g 0(u)|2 + |g 2(u)|2 + 2Re{g 0(u)g 2(u)} cos 2ϕ

+|g 1(u)|2 cos2 ϕ
)

F (u; z0),

(34)

whose only difference from that for a true horizontal dipole is
the last term, |g 1(u)|2 cos2 ϕ, meaning that the difference is zero
only at the central axial line perpendicular to the polarization.

Perhaps of more consequence to the final PSFs are the
differences in spatial coherence and polarization over the pupil.
For a pure horizontal dipole source, the cross-spectral density
matrix is

Wx (u1, u2)=K(u1)x̂ x̂ †K†(u2), (35)

where x̂ x̂ † is a 3D projection in the x direction (as opposed to
Px , which enacts a 2D projection). Note that Wx is simply the
outer product ofKx̂ and its conjugate (each evaluated at a differ-
ent pupil point), so there is no statistical decorrelation between
any two pupil points. This is not the case, on the other hand, for
the mimicked dipole based on an unpolarized emitter followed
by a polarizer at the pupil, for which all three orthogonal dipole
directions contribute to the x component at the pupil, each with
a different distribution (two of them being important mainly
at the edges of the pupil). These contributions are mutually
incoherent. Therefore, the cross-spectral density matrix at the
pupil right after the polarizer due to an unpolarized emitter at
the nominal source plane is given by

Wp,mimic(u1, u2)= PxK(u1)K†(u2)Px , (36)

whose only nonzero element is the x x one. The degree of coher-
ence for this nonzero component is then

µp,mimic(u1, u2)=
{Wp,mimic(u1, u2)}xx√

{Wp,mimic(u1, u1)}xx{Wp,mimic(u2, u2)}xx

.

(37)
Note that for an emitter at the origin and in the absence of
aberrations or SAF contributions, this degree of polarization
is real. Because {Wp,mimic}xx is not a separable function of u1

and u2,µp,mimic typically differs from unity for u1 6= u2. This is
illustrated in Fig. 10 for different slices of the pupil: two in which
u1 ‖ u2, and one in which u1⊥u2. Note in particular that for
sufficiently separated points along the horizontal line, the degree
of coherence vanishes and then becomes negative, due to the
predominance at those points of the radially polarized contribu-
tion introduced by the longitudinal dipole. On the other hand,
for any two pupil points along a vertical line (ϕ1 = ϕ2 = π/2),
the polarizer eliminates the contributions from the vertical
and longitudinal components, so that µp,mimic = 1. In general,
if both points are near the center of the pupil, the correlation
approaches unity.

A quantitative measure of the similarity of both pupil
distributions that accounts for amplitude, coherence, and
polarization is given by the following normalized projection:

C(NA)=

{∫∫
Tr[Wx (u1, u2)Wp,mimic(u2, u1)] d2u1 d2u2∫

Tr[Wx (u, u)] d2u
∫

Tr[Wp,mimic(u, u)]d2u

}1/2

.

(38)

This measure achieves its maximum value of unity only if
the two cross-spectral density matrices are identical. Given
Parseval’s identity, this measure also quantifies the difference in
amplitude, coherence, and polarization of the corresponding
fields at the detector plane; given appropriate normalization,
such RMS difference is given by

√
1−C 2. However, the main

interest in this work is in differences in PSFs, namely, only in
intensity. Therefore, it is expected that

√
1−C 2 will overesti-

mate (and hence provide an upper bound for) the RMS errors
in PSF. It is convenient to use polar coordinates to evaluate this
measure, and for the case considered here, the integrals in the
angular variables turn out to be solvable in closed form, leading
to the expression

C(NA)=
G0 + G2/2

√
(G0 + G2)(G0 + G1/2+ G2)

, (39)
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Fig. 10. Degree of coherence µp,mimic for (a) ϕ1 = ϕ2 = 0, (b) ϕ1 = ϕ2 = π/4, and (c) ϕ1 = 0, and ϕ2 = π/2. Here, the unpolarized emitter
is assumed to be in water (n0 ≈ 1.33), nf = 1.51, and we show u1,2 only within non-SAF regions, since for SAF, the degree of coherence becomes
complex.
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Fig. 11. Simulation of the PSFs of (a), (d) true horizontal dipoles, (b), (e) mimicked ones using a 200 nm diameter fluorescent bead and a polarizer,
and (c), (f ) the deconvolution of the results in (b) and (e) with an apodized disk G0. These PSFs are (a)–(c) for no polarization filtering and (d)–(f ) for
an engineered PSF [16]. Here, NA= 1.3, there is index matching, and the embedding medium is water (nf = n0 ≈ 1.33). Squares represent 1.5 µm
in the object space.

where G j =
∫
|g j (u)|2 F (u, z0)udu. Note that the dependence

on z0 remains for the SAF region.
So far, we have considered the similarity of PSFs for a trans-

verse dipole and an unpolarized source (supplemented with a
polarizer), both at the focal plane. Let us consider now the effect
of a small amount of defocus. The Taylor expansion approach
is useful for these purposes. Figure 7(b) shows the distributions
of Im at the nominal focal distance for an unpolarized emitter
followed by a horizontal polarizer. Given their uniform polari-
zation, these PSF components maintain their distributions
(except for a scaling factor) when projected onto any other
polarization. Therefore, unlike a single horizontal dipole, as
shown in Figs. 4(d) and 4(e), Im remains zero for odd m even
when projecting onto a circular polarization, showing that the
behavior of a transverse dipole under defocus is not being fully
mimicked.

B. Mimicking Transverse Dipoles Using
Finite-Sized Beads

Let us finish by comparing the PSF of a true horizontal dipole
to that of a mimicked one using a fluorescent bead and a lin-
ear polarizer at the pupil plane of the imaging system. For the

latter, we use the approximation in Eq. (15) with N = 15. We
also test the deconvolution method discussed in the previous
section to compensate for the blurring introduced by the bead’s
size. Figure 11 shows the resulting simulated PSFs for a high
NA system with no SAF and with an index-matching scenario
(NA< n0 = nf ) for two cases: a standard imaging system with
no aberrations, and a PSF engineering technique called coor-
dinate and height with dithering and orientation (CHIDO)
[16] based on a spatially varying birefringent mask and circular
polarization filtering.

We also computed the RMS error between the PSFs of an
emulated fluorophore (with and without deconvolution) and
a true horizontal dipole using different bead radii and various
values of NA; these are shown in Fig. 12. Naturally, the error
between raw PSFs increases with both NA and bead radius, as
shown in Fig. 12(a). Note from Fig. 12(b), though, that the
deconvolution using the apodized disk G0 eliminates almost
completely the error’s dependence on the radius (since the con-
tours are essentially horizontal). Surprisingly, on the other hand,
the deconvolution with a uniform disk, shown in Fig. 12(c) also
accounts well for the size mismatch, and can give an error that is
smaller for larger beads. We performed the same computations
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Fig. 12. RMS error, for varying NAs and bead radii, between the PSF of a true transverse dipole and the mimicked one using a fluorescent bead
for: (a) no treatment, (b) deconvolution with the apodized disc G0, and (c) deconvolution with a uniform disk. Here, NA= 1.3, and the embedding
medium is water (n0 = 1.33).

for CHIDO’s engineered PSFs and obtained almost identical
behavior, only with slightly higher RMS errors (approximately
shifted up by 1%.

The reason that the effect of particle size is not necessarily
negative can be understood from the coherence analysis. Due
to the van Cittert–Zernike theorem, the effect of the spatial
extension of the bead is to include an extra factor in the cross-
spectral density matrix at the pupil given in Eq. (36). This factor
turns out to take a simple analytic form for the two bead models
discussed here: for the solid sphere, it is given by 3σV j1(η)/η,
while for the empty shell, it is given by σS sinc(η), where for an
index-matching scenario,

η(u1, u2)= knR
√

u2
1 + u2

2 − 2u1u2 cos(ϕ2 − ϕ1)+ [γ ∗(u1, n)− γ (u2, n)]2. (40)

Note that for R→ 0, the two factors tend to a constant equal to
σV or σS . For R > 0, on the other hand, these factors decrease
as u1 and u2 increase, meaning that the contributions from the
edges of the pupil are partially suppressed. These are precisely
the regions where the radiation pattern of a transverse dipole
differs most from that of an unpolarized source supplemented
with a linear polarizer, and therefore this suppression is not
necessarily detrimental to the fit. As shown by the results in
Fig. 12(c), increasing the radius can even lead to possibly better
matches, particularly after post-processing of the PSFs.

6. CONCLUSION

In this work, we studied how and under which conditions
fluorescent beads can be used to mimic transverse dipoles. We
did this by developing models that take into account the three-
dimensional size and the incoherent and isotropic emission
pattern of fluorescent beads. Of particular importance is the
development of a semi-analytic method to model the blurring
due bead size. This method is based on a Taylor expansion
around the bead’s central plane and provides different orders
of corrections for the final PSF that are implemented through
two-dimensional convolutions. It is therefore much easier to
implement than a full three-dimensional convolution, and it
converges rapidly, with the first two terms providing already an
estimate of the blurring that is almost indistinguishable from
the exact result for typical bead sizes and NAs. Additionally, we

showed that the difference in size between a point-like incoher-
ent source and a fluorescent bead can be corrected satisfactorily
by 2D deconvolution with the apodized disk function given
in Eq. (20), hence reducing drastically the computational
resources needed for post-processing.

The spatial extent of the bead is not the only factor that makes
its PSF differ from that of a point dipole. The second important
difference is in their radiation patterns. The pattern for the bead
can be made more similar to that of the dipole by placing at the
pupil a polarizer plane aligned with the direction of the dipole,
assumed here to transverse to the axis of the microscope. For

systems with small NAs, this leads to very good agreement, but
for larger NAs, there are notable differences in the intensity,
polarization direction, and even the spatial coherence of the
pupil distributions of the point dipole and the bead followed
by a polarizer. These differences result in a difference in the
corresponding PSFs, particularly in their high spatial frequency
components. As mentioned earlier, the difference due to the
blurring caused by bead size can be partially removed through
deconvolution. Surprisingly, the resulting error can sometimes
be smaller for larger beads. This can be explained by the fact that
spatial blurring suppresses the contributions at the pupil plane
from the edges of the pupil (i.e., the PSF’s high spatial frequen-
cies). The deconvolution process, which aims to reinstate these
suppressed contributions, does it in a way that can be sometimes
more consistent with the pattern for a point dipole than the
suppressed contributions were.

The current paper focuses mostly on transverse dipoles, but
future work will extend this study to ways of emulating longi-
tudinal and/or oblique dipoles by using beads and appropriate
polarization plates.
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